ﻻ يوجد ملخص باللغة العربية
Secure communication using hyperchaos has a better potential performance, but hyperchaotic impulse circuits synchronization is a challenging task. In this paper, an impulse control method is proposed for the synchronization of two hyperchaotic Chen circuits. The sufficient conditions for the synchronization of hyperchaotic systems using the impulse control are given. The upper bound of the impulse interval is derived to assure the synchronization error system to be asymptotically stable. Simulation and circuit experiment show the correctness of the analysis and feasibility of the proposed method.
We show that oscillation death as a specific type of oscillation suppression, which implies symmetry breaking, can be controlled by introducing time-delayed coupling. In particular, we demonstrate that time delay influences the stability of an inhomo
We study the synchronization of chaotic units connected through time-delayed fluctuating interactions. We focus on small-world networks of Bernoulli and Logistic units with a fixed chiral backbone. Comparing the synchronization properties of static a
We investigate the stability of synchronized states in delay-coupled networks where synchronization takes place in groups of different local dynamics or in cluster states in networks with identical local dynamics. Using a master stability approach, w
Chaos synchronization may arise in networks of nonlinear units with delayed couplings. We study complete and sublattice synchronization generated by resonance of two large time delays with a specific ratio. As it is known for single delay networks, t
We show that two coupled map lattices that are mutually coupled to one another with a delay can display zero delay synchronization if they are driven by a third coupled map lattice. We analytically estimate the parametric regimes that lead to synchro