ترغب بنشر مسار تعليمي؟ اضغط هنا

Photometric and spectroscopic Studies of Superoutbursts of Three Dwarf Novae Independently Identified by The SVOM/GWAC System in 2018

135   0   0.0 ( 0 )
 نشر من قبل Jing Wang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report our photometric and spectroscopic follow-up observations of the superoutbursts of three dwarf novae (GWAC,180415A, GWAC,181017A and GWAC,181211A) identified independently by the Ground Wide-angle Cameras system, one of the ground-based instruments of the China-France SVOM mission. Based on a combination of our photometry and that taken from the AAVSO, our period analysis of the superhumps enables us to determine the mass ratios to be 0.0967-0.1163, 0.1879-0.1883 and 0.0981-0.1173 for GWAC,180415A, GWAC,181017A and GWAC,181211A, respectively. GWAC,180415A can be firmly identified as a WZ sge-type dwarf novae due to its long duration ($sim2$ weeks) multiple rebrightenings with amplitudes of 3-4 magnitudes, the early superhump associated with a double-wave modulation and the low mass ratio. The inferred low mass ratio and location in the $varepsilon-P_{mathrm{orb}}$ diagram suggest that GWAC,181211A is a WZ sge-type dwarf novae candidate. The measured Balmer decrements suggest the Balmer line emission is produced from an optical thick region in GWAC,180415A and GWAC,181017A, and from an optical thin region in GWAC,181211A.



قيم البحث

اقرأ أيضاً

We present spectroscopic and photometric observations of 17 dwarf-nova superoutbursts obtained by KOOLS-IFU mounted on the 3.8 m telescope Seimei at Okayama Observatory of Kyoto University and through VSNET collaboration. Our spectroscopic observatio ns for six outbursts were performed within 1 d from their optical peak. 11 objects (TCP J00590972+3438357. ASASSN-19ado, TCP J06073081-0101501, ZTF20aavnpug, ASASSN-19ady, MASTER OT J061642.05+435617.9, TCP J20034647+1335125, ASASSN-20kv, ASASSN-20kw, MASTER OT J213908.79+161240.2, and ASASSN-20mf) were previously unknown systems, and our observations enabled quick classification of their transient type. These results illustrate that Seimei telescope has the capability to conduct quick follow-up observations of unknown transients. Our photometric observations yielded that 11 objects are WZ Sge-type dwarf novae and their candidates, and the other six objects are SU UMa-type dwarf novae and their candidates. The He II 4686AA~ emission line was clearly detected among ASASSN-19ado, TCP J06073081-0101501 and MASTER OT J213908.79+161240.2, whose association with a spiral arm structure in an accretion disk has been suggested in the previous studies. Our result suggests that a higher-inclination system shows a stronger emission line of He II 4686AA, as well as larger-amplitude early superhumps.
We present phase-resolved spectroscopy, photometry and circular spectropolarimetry of the eclipsing polar UZ Fornacis. Doppler tomography of the strongest emission lines using the inside-out projection revealed the presence of three emission regions: from the irradiated face of the secondary star, the ballistic stream and the threading region, and the magnetically confined accretion stream. The total intensity spectrum shows broad emission features and a continuum that rises in the blue. The circularly polarized spectrum shows the presence of three cyclotron emission harmonics at $sim$4500 AA{}, 6000 AA{} and 7700 AA{}, corresponding to harmonic numbers 4, 3, and 2, respectively. These features are dominant before the eclipse and disappear after the eclipse. The harmonics are consistent with a magnetic field strength of $sim$57 MG. We also present phase-resolved circular and linear photopolarimetry to complement the spectropolarimetry around the times of eclipse. MeerKAT radio observations show a faint source which has a peak flux density of 30.7 $pm$ 5.4 $mu$Jy/beam at 1.28 GHz at the position of UZ For.
131 - L. P. Xin , H. L. Li , J. Wang 2020
In this paper, we report the detection and follow-ups of a super stellar flare GWAC,181229A with an amplitude of $Delta Rsim$9.5 mag on a M9 type star by $text{SVOM/GWAC}$ and the dedicated follow-up telescopes. The estimated bolometric energy $E_{bo l}$ is $(5.56-9.25)times10^{34}$ ergs, which places the event to be one of the most powerful flares on ultracool stars. The magnetic strength is inferred to be (3.6-4.7) kG. Thanks to the sampling with a cadence of 15 seconds, a new component near the peak time with a very steep decay is detected in the $R$-band light curve, followed by the two-component flare template given by Davenport et al. (2014). An effective temperature of $5340pm40$ K is measured by a blackbody shape fitting to the spectrum at the shallower phase during the flare. The filling factors of the flare are estimated to be $sim$30% and 19% at the peak time and at 54 min after the first detection. The detection of the particular event with large amplitude, huge-emitted energy and a new component demonstrates that a high cadence sky monitoring cooperating with fast follow-up observations is very essential for understanding the violent magnetic activity.
We present the SVOM (Space-based multi-band astronomical Variable Objects Monitor) mission that the Chinese National Space Agency and the French Space Agency have decided to jointly implement. SVOM has been designed to detect all known types of gamma -ray bursts (GRBs), to provide fast and reliable GRB positions, to measure the broadband spectral shape and temporal properties of the GRB prompt emission, and to quickly identify the optical/near-infrared afterglows of detected GRBs, including high-redshift ones. Scheduled to be in orbit in the second half of the present decade, the SVOM satellite will carry a very innovative scientific payload combining for the first time a wide field X- and gamma-ray coded mask imager for GRB real-time localizations to few arcmin, a non-imaging gamma-ray monitor, and two narrow-field instruments for the study of the GRB early afterglow emission in the X-ray and visible bands. The SVOM payload is complemented by ground-based instruments including a wide-field camera to catch the GRB prompt emission in the visible band and two robotic telescopes to measure the photometric properties of the early afterglow. A particular attention is paid to the GRB follow-up in facilitating the observation of the SVOM detected GRB by the largest ground based telescopes.
Symbiotic binaries are systems containing white dwarfs (WDs) and red giants. Symbiotic novae are those systems in which thermonuclear eruptions occur on the WD components. These are to be distinguished from events driven by accretion disk instabiliti es analogous to dwarf novae eruptions in cataclysmic variable outbursts. Another class of symbiotic systems are those in which the WD is extremely luminous and it seems likely that quiescent nuclear burning is ongoing on the accreting WD. A fundamental question is the secular evolution of the WD. Do the repeated outbursts or quiescent burning in these accreting systems cause the WD to gain or lose mass? If it is gaining mass, can it eventually reach the Chandrasekhar Limit and become a supernova (a SN Ia if it can hide the hydrogen and helium in the system)? In order to better understand these systems, we have begun a new study of the evolution of Thermonuclear Runaways (TNRs) in the accreted envelopes of WDs using a variety of initial WD masses, luminosities and mass accretion rates. We use our 1-D hydro code, NOVA, which includes the new convective algorithm of Arnett, Meakin and Young, the Hix and Thielemann nuclear reaction solver, the Iliadis reaction rate library, the Timmes equation of state, and the OPAL opacities. We assume a solar composition (Lodders abundance distribution) and do not allow any mixing of accreted material with core material. This assumption strongly influences our results. We report here (1) that the WD grows in mass for all simulations so that canonical `steady burning does not occur, and (2) that only a small fraction of the accreted matter is ejected in some (but not all) simulations. We also find that the accreting systems, before thermonuclear runaway, are too cool to be seen in X-ray searches for SN Ia progenitors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا