ترغب بنشر مسار تعليمي؟ اضغط هنا

A spectroscopic, photometric, polarimetric and radio study of the eclipsing polar UZ Fornacis: the first simultaneous SALT and MeerKAT observations

101   0   0.0 ( 0 )
 نشر من قبل Zwidofhelangani Khangale Mr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present phase-resolved spectroscopy, photometry and circular spectropolarimetry of the eclipsing polar UZ Fornacis. Doppler tomography of the strongest emission lines using the inside-out projection revealed the presence of three emission regions: from the irradiated face of the secondary star, the ballistic stream and the threading region, and the magnetically confined accretion stream. The total intensity spectrum shows broad emission features and a continuum that rises in the blue. The circularly polarized spectrum shows the presence of three cyclotron emission harmonics at $sim$4500 AA{}, 6000 AA{} and 7700 AA{}, corresponding to harmonic numbers 4, 3, and 2, respectively. These features are dominant before the eclipse and disappear after the eclipse. The harmonics are consistent with a magnetic field strength of $sim$57 MG. We also present phase-resolved circular and linear photopolarimetry to complement the spectropolarimetry around the times of eclipse. MeerKAT radio observations show a faint source which has a peak flux density of 30.7 $pm$ 5.4 $mu$Jy/beam at 1.28 GHz at the position of UZ For.



قيم البحث

اقرأ أيضاً

Double Periodic Variables (DPV) are among the new enigmas of semi-detached eclipsing binaries. These are intermediate-mass binaries characterized by a long photometric period lasting on average 33 times the orbital period. We present a spectroscopic and photometric study of the DPV V495 Cen based on new high-resolution spectra and the ASAS V-band light curve. We have determined an improved orbital period of $33.492 pm 0.002$ d and a long period of 1283 d. We find a cool evolved star of $M_{2}=0.91pm 0.2 M_{odot}$, $T_{2}= 6000pm 250 K$ and $R_{2}=19.3 pm 0.5 R_{odot}$ and a hot companion of $M_{1}= 5.76pm 0.3 M_{odot}$, $T_{1}=16960pm 400 K$ and $R=4.5pm0.2 R_{odot}$. The mid-type B dwarf is surrounded by a concave and geometrically thick disc, of radial extension $R_{d}= 40.2pm 1.3 R_{odot}$ contributing $sim$ 11 percent to the total luminosity of the system at the V band. The system is seen under inclination $84.!!^{circ}8$ $pm$ $0.!!^{circ}6$ and it is at a distance $d= 2092 pm 104.6$ pc. The light curve analysis suggests that the mass transfer stream impacts the external edge of the disc forming a hot region 11 % hotter than the surrounding disc material. The persistent $V<R$ asymmetry of the H$alpha$ emission suggests the presence of a wind and the detection of a secondary absorption component in He I lines indicates a possible wind origin in the hotspot region.
Detached eclipsing binaries are remarkable systems to provide accurate fundamental stellar parameters. The fundamental stellar parameters and the metallicity values of stellar systems are needed to deeply understand the stellar evolution and formatio n. In this study, we focus on the detailed spectroscopic and photometric studies of three detached eclipsing binary systems, V372,And, V2080,Cyg, and CF,Lyn to obtain their accurate stellar, atmospheric parameters,and chemical compositions. An analysis of light and radial velocity curves was carried out to derive the orbital and stellar parameters. The disentangled spectra of component stars were obtained for the spectroscopic analysis. Final teff, logg, $xi$, vsini, parameters and the element abundances of component stars were derived by using the spectrum synthesis method. The fundamental stellar parameters were determined with a high certainty for V372,And, V2080,Cyg ($sim$$1-2$%) and with an accuracy for CF,Lyn ($sim$$2-6$%). The evolutionary status of the systems was examined and their ages were obtained. It was found that the component stars of V2080,Cyg have similar iron abundance which is slightly lower than solar iron abundance. Additionally, we showed that the primary component of CF,Lyn exhibits a non-spherical shape with its 80% Roche lobe filling factor. It could be estimated that CF,Lyn will start its first Roche overflow in the next 0.02,Gyr.
We present an analysis of UBVR$_{rm C}$I$_{rm C}$JH photometry and phase-resolved optical spectroscopy of NSVS 14256825, an HW Vir type binary. The members of this class consist of a hot subdwarf and a main-sequence low-mass star in a close orbit ($P _{rm orb} ~ 0.1$ d). Using the primary-eclipse timings, we refine the ephemeris for the system, which has an orbital period of 0.11037 d. From the spectroscopic data analysis, we derive the effective temperature, $T_1 = 40000 pm 500$ K, the surface gravity, $log g_1 = 5.50pm0.05$, and the helium abundance, $n(rm He)/n(rm H)=0.003pm0.001$, for the hot component. Simultaneously modelling the photometric and spectroscopic data using the Wilson-Devinney code, we obtain the geometrical and physical parameters of NSVS 14256825. Using the fitted orbital inclination and mass ratio ($i = 82fdg5pm0fdg3$ and $q = M_2/M_1 = 0.260pm0.012$, respectively), the components of the system have $M_1 = 0.419 pm 0.070 M_{odot}$, $R_1 = 0.188 pm 0.010 R_{odot}$, $M_2 = 0.109 pm 0.023 M_{odot}$, and $R_2 = 0.162 pm 0.008 R_{odot}$. From its spectral characteristics, the hot star is classified as an sdOB star.
126 - P. Picchi 2020
We present a study of the mass transfer and wind outflows of SS433, focusing on the so-called stationary lines based on archival high and low resolution optical spectra, and new optical multifilter polarimetry and low resolution optical spectra spann ing an interval of a decade and a broad range of precessional and orbital phases. We derive $text{E(B-V)}=0.86pm0.10$ and revised UV and U band polarizations and polarization angles that yield the same position angle as the optical. The polarization wavelength dependence is consistent with optical-dominating electron scattering with a Rayleigh component in U and the UV filters; no polarization changes were observed during a flare event. Using profile orbital and precessional modulation of multiple lines we derive properties for the accretion disk, present evidence for a strong disk wind, determine its velocity structure, and demonstrate its variability on timescales unrelated to the orbit. We derive a mass ratio $q=0.37pm0.04$, and masses $text{M}_X=4.2pm0.4 text{M}_odot$, $text{M}_A=11.3pm 0.6 text{M}_odot$, and show that the A star fills its Roche surface. The O I 7772 r{A} and 8446 r{A} lines show different but related orbital modulation and no evidence for a circumbinary disk component. Instead, the spectral line profile variability can be understood with an ionization stratified outflow predicted by thermal wind modeling, which also accounts for an extended equatorial structure detected at long wavelength.
161 - Jian-Ying Bai 2020
We conducted photometric and spectroscopic observations for Ross 15 in order to further study the flare properties of this less observed flare star. A total of 28 B-band flares are detected in 128 hours of photometric observations, leading to a total flare rate of 0.22(+-0.04) hour^-1, more accurate than that provided by previous work. We give the energy range of the B-band flare (10^29.5 - 10^31.5 erg) and the FFD for the star. Within the same energy range, the FFD are lower than that of GJ 1243 (M4) and YZ CMi (M4.5), roughly in the middle of those of three M5-type stars and higher than the average FFDs of spectral types >= M6. We performed, for the first time to Ross 15, simultaneous high-cadence spectroscopic and photometric observations, resulting in detection of the most energetic flare in our sample. The intensity enhancements of the continuum and Balmer lines with significant correlations between them are detected during the flare, which is same with that of the other deeply studied flare stars of the similar spectral type.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا