ﻻ يوجد ملخص باللغة العربية
We address the problem of partitioning a vertex-weighted connected graph into $k$ connected subgraphs that have similar weights, for a fixed integer $kgeq 2$. This problem, known as the emph{balanced connected $k$-partition problem} ($BCP_k$), is defined as follows. Given a connected graph $G$ with nonnegative weights on the vertices, find a partition ${V_i}_{i=1}^k$ of $V(G)$ such that each class $V_i$ induces a connected subgraph of $G$, and the weight of a class with the minimum weight is as large as possible. It is known that $BCP_k$ is $NP$-hard even on bipartite graphs and on interval graphs. It has been largely investigated under different approaches and perspectives. On the practical side, $BCP_k$ is used to model many applications arising in police patrolling, image processing, cluster analysis, operating systems and robotics. We propose three integer linear programming formulations for the balanced connected $k$-partition problem. The first one contains only binary variables and a potentially large number of constraints that are separable in polynomial time. Some polyhedral results on this formulation, when all vertices have unit weight, are also presented. The other formulations are based on flows and have a polynomial number of constraints and variables. Preliminary computational experiments have shown that the proposed formulations outperform the other formulations presented in the literature.
Exactly solving multi-objective integer programming (MOIP) problems is often a very time consuming process, especially for large and complex problems. Parallel computing has the potential to significantly reduce the time taken to solve such problems,
Cutting plane methods play a significant role in modern solvers for tackling mixed-integer programming (MIP) problems. Proper selection of cuts would remove infeasible solutions in the early stage, thus largely reducing the computational burden witho
Motivated by recent computational models for redistricting and detection of gerrymandering, we study the following problem on graph partitions. Given a graph $G$ and an integer $kgeq 1$, a $k$-district map of $G$ is a partition of $V(G)$ into $k$ non
The subgraph-centric programming model is a promising approach and has been applied in many state-of-the-art distributed graph computing frameworks. However, traditional graph partition algorithms have significant difficulties in processing large-sca
Motivated by applications in gerrymandering detection, we study a reconfiguration problem on connected partitions of a connected graph $G$. A partition of $V(G)$ is emph{connected} if every part induces a connected subgraph. In many applications, it