ﻻ يوجد ملخص باللغة العربية
Motivated by recent computational models for redistricting and detection of gerrymandering, we study the following problem on graph partitions. Given a graph $G$ and an integer $kgeq 1$, a $k$-district map of $G$ is a partition of $V(G)$ into $k$ nonempty subsets, called districts, each of which induces a connected subgraph of $G$. A switch is an operation that modifies a $k$-district map by reassigning a subset of vertices from one district to an adjacent district; a 1-switch is a switch that moves a single vertex. We study the connectivity of the configuration space of all $k$-district maps of a graph $G$ under 1-switch operations. We give a combinatorial characterization for the connectedness of this space that can be tested efficiently. We prove that it is NP-complete to decide whether there exists a sequence of 1-switches that takes a given $k$-district map into another; and NP-hard to find the shortest such sequence (even if a sequence of polynomial length is known to exist). We also present efficient algorithms for computing a sequence of 1-switches that takes a given $k$-district map into another when the space is connected, and show that these algorithms perform a worst-case optimal number of switches up to constant factors.
Motivated by applications in gerrymandering detection, we study a reconfiguration problem on connected partitions of a connected graph $G$. A partition of $V(G)$ is emph{connected} if every part induces a connected subgraph. In many applications, it
Let $G$ be a graph such that each edge has its list of available colors, and assume that each list is a subset of the common set consisting of $k$ colors. Suppose that we are given two list edge-colorings $f_0$ and $f_r$ of $G$, and asked whether the
We introduce the rendezvous game with adversaries. In this game, two players, {sl Facilitator} and {sl Disruptor}, play against each other on a graph. Facilitator has two agents, and Disruptor has a team of $k$ agents located in some vertices of the
The $k$-dimensional Weisfeiler-Leman algorithm ($k$-WL) is a fruitful approach to the Graph Isomorphism problem. 2-WL corresponds to the original algorithm suggested by Weisfeiler and Leman over 50 years ago. 1-WL is the classical color refinement ro
A tessellation of a graph is a partition of its vertices into vertex disjoint cliques. A tessellation cover of a graph is a set of tessellations that covers all of its edges. The $t$-tessellability problem aims to decide whether there is a tessellati