ﻻ يوجد ملخص باللغة العربية
The results of this paper are 3-folded. Firstly, for any stationary determinantal process on the integer lattice, induced by strictly positive and strictly contractive involution kernel, we obtain the necessary and sufficient condition for the $psi$-mixing property. Secondly, we obtain the existence of the $L^q$-dimensions of the stationary determinantal measure on symbolic space ${0, 1}^mathbb{N}$ under appropriate conditions. Thirdly, the previous two results together imply the precise increasing rate of the longest common substring of a typical pair of points in ${0, 1}^mathbb{N}$.
We show that the symplectic and orthogonal character analogues of Okounkovs Schur measure (on integer partitions) are determinantal, with explicit correlation kernels. We apply this to prove certain Borodin-Okounkov-Gessel-type results concerning Toe
In this paper we study the existence of stationary solutions for stochastic partial differential equations. We establish a new connection between $L_{rho}^2({mathbb{R}^{d}};{mathbb{R}^{1}}) otimes L_{rho}^2({mathbb{R}^{d}};{mathbb{R}^{d}})$ valued so
We show that the central limit theorem for linear statistics over determinantal point processes with $J$-Hermitian kernels holds under fairly general conditions. In particular, We establish Gaussian limit for linear statistics over determinantal poin
We develop the theory of strong stationary duality for diffusion processes on compact intervals. We analytically derive the generator and boundary behavior of the dual process and recover a central tenet of the classical Markov chain theory in the di
We consider the relationship between stationary distributions for stochastic models of reaction systems and Lyapunov functions for their deterministic counterparts. Specifically, we derive the well known Lyapunov function of reaction network theory a