ترغب بنشر مسار تعليمي؟ اضغط هنا

Reinforcement Learning Enhanced Quantum-inspired Algorithm for Combinatorial Optimization

72   0   0.0 ( 0 )
 نشر من قبل Dmitrii Beloborodov
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum hardware and quantum-inspired algorithms are becoming increasingly popular for combinatorial optimization. However, these algorithms may require careful hyperparameter tuning for each problem instance. We use a reinforcement learning agent in conjunction with a quantum-inspired algorithm to solve the Ising energy minimization problem, which is equivalent to the Maximum Cut problem. The agent controls the algorithm by tuning one of its parameters with the goal of improving recently seen solutions. We propose a new Rescaled Ranked Reward (R3) method that enables stable single-player version of self-play training that helps the agent to escape local optima. The training on any problem instance can be accelerated by applying transfer learning from an agent trained on randomly generated problems. Our approach allows sampling high-quality solutions to the Ising problem with high probability and outperforms both baseline heuristics and a black-box hyperparameter optimization approach.



قيم البحث

اقرأ أيضاً

Many real-world problems can be reduced to combinatorial optimization on a graph, where the subset or ordering of vertices that maximize some objective function must be found. With such tasks often NP-hard and analytically intractable, reinforcement learning (RL) has shown promise as a framework with which efficient heuristic methods to tackle these problems can be learned. Previous works construct the solution subset incrementally, adding one element at a time, however, the irreversible nature of this approach prevents the agent from revising its earlier decisions, which may be necessary given the complexity of the optimization task. We instead propose that the agent should seek to continuously improve the solution by learning to explore at test time. Our approach of exploratory combinatorial optimization (ECO-DQN) is, in principle, applicable to any combinatorial problem that can be defined on a graph. Experimentally, we show our method to produce state-of-the-art RL performance on the Maximum Cut problem. Moreover, because ECO-DQN can start from any arbitrary configuration, it can be combined with other search methods to further improve performance, which we demonstrate using a simple random search.
In this paper, a novel training paradigm inspired by quantum computation is proposed for deep reinforcement learning (DRL) with experience replay. In contrast to traditional experience replay mechanism in DRL, the proposed deep reinforcement learning with quantum-inspired experience replay (DRL-QER) adaptively chooses experiences from the replay buffer according to the complexity and the replayed times of each experience (also called transition), to achieve a balance between exploration and exploitation. In DRL-QER, transitions are first formulated in quantum representations, and then the preparation operation and the depreciation operation are performed on the transitions. In this progress, the preparation operation reflects the relationship between the temporal difference errors (TD-errors) and the importance of the experiences, while the depreciation operation is taken into account to ensure the diversity of the transitions. The experimental results on Atari 2600 games show that DRL-QER outperforms state-of-the-art algorithms such as DRL-PER and DCRL on most of these games with improved training efficiency, and is also applicable to such memory-based DRL approaches as double network and dueling network.
Model-based Reinforcement Learning (MBRL) algorithms have been traditionally designed with the goal of learning accurate dynamics of the environment. This introduces a mismatch between the objectives of model-learning and the overall learning problem of finding an optimal policy. Value-aware model learning, an alternative model-learning paradigm to maximum likelihood, proposes to inform model-learning through the value function of the learnt policy. While this paradigm is theoretically sound, it does not scale beyond toy settings. In this work, we propose a novel value-aware objective that is an upper bound on the absolute performance difference of a policy across two models. Further, we propose a general purpose algorithm that modifies the standard MBRL pipeline -- enabling learning with value aware objectives. Our proposed objective, in conjunction with this algorithm, is the first successful instantiation of value-aware MBRL on challenging continuous control environments, outperforming previous value-aware objectives and with competitive performance w.r.t. MLE-based MBRL approaches.
We develop a general method for incentive-based programming of hybrid quantum-classical computing systems using reinforcement learning, and apply this to solve combinatorial optimization problems on both simulated and real gate-based quantum computer s. Relative to a set of randomly generated problem instances, agents trained through reinforcement learning techniques are capable of producing short quantum programs which generate high quality solutions on both types of quantum resources. We observe generalization to problems outside of the training set, as well as generalization from the simulated quantum resource to the physical quantum resource.
The prospect of using quantum computers to solve combinatorial optimization problems via the quantum approximate optimization algorithm (QAOA) has attracted considerable interest in recent years. However, a key limitation associated with QAOA is the need to classically optimize over a set of quantum circuit parameters. This classical optimization can have significant associated costs and challenges. Here, we provide an expanded description of Lyapunov control-inspired strategies for quantum optimization, as first presented in arXiv:2103.08619, that do not require any classical optimization effort. Instead, these strategies utilize feedback from qubit measurements to assign values to the quantum circuit parameters in a deterministic manner, such that the combinatorial optimization problem solution improves monotonically with the quantum circuit depth. Numerical analyses are presented that investigate the utility of these strategies towards MaxCut on weighted and unweighted 3-regular graphs, both in ideal implementations and also in the presence of measurement noise. We also discuss how how these strategies may be used to seed QAOA optimizations in order to improve performance for near-term applications, and explore connections to quantum annealing.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا