ﻻ يوجد ملخص باللغة العربية
We report the experimental realization of a 3D capacitively-shunt superconducting flux qubit with long coherence times. At the optimal flux bias point, the qubit demonstrates energy relaxation times in the 60-90 $mu$s range, and Hahn-echo coherence time of about 80 $mu$s which can be further improved by dynamical decoupling. Qubit energy relaxation can be attributed to quasiparticle tunneling, while qubit dephasing is caused by flux noise away from the optimal point. Our results show that 3D c-shunt flux qubits demonstrate improved performance over other types of flux qubits which is advantageous for applications such as quantum magnetometry and spin sensing.
We realize a $Lambda$ system in a superconducting circuit, with metastable states exhibiting lifetimes up to 8,ms. We exponentially suppress the tunneling matrix elements involved in spontaneous energy relaxation by creating a heavy fluxonium, realiz
We demonstrate a coherence time of 2.1(1)~s for electron spin superposition states of a single trapped $^{40}$Ca$^+$ ion. The coherence time, measured with a spin-echo experiment, corresponds to residual rms magnetic field fluctuations $leq$~2.7$time
We use one single, few-picosecond-long, variably polarized laser pulse to deterministically write any selected spin state of a quantum dot confined dark exciton whose life and coherence time are six and five orders of magnitude longer than the laser
We investigate theoretically the coupling of a cavity mode to a continuous distribution of emitters. We discuss the influence of the emitters inhomogeneous broadening on the existence and on the coherence properties of the polaritonic peaks. We find
We demonstrate long-lived coherence in internal hyperfine states of a single Ca{43} trapped-ion qubit $[T_2=1.2(2)s]$, and in external motional states of a single Ca{40} trapped-ion qubit $[T_2=0.18(4)s]$, in the same apparatus. The motional decohere