ترغب بنشر مسار تعليمي؟ اضغط هنا

The waiting time phenomenon in spatially discretized porous medium and thin film equations

192   0   0.0 ( 0 )
 نشر من قبل Daniel Matthes
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Various degenerate diffusion equations exhibit a waiting time phenomenon: Dependening on the flatness of the compactly supported initial datum at the boundary of the support, the support of the solution may not expand for a certain amount of time. We show that this phenomenon is captured by particular Lagrangian discretizations of the porous medium and the thin-film equations, and we obtain suffcient criteria for the occurrence of waiting times that are consistent with the known ones for the original PDEs. Our proof is based on estimates on the fluid velocity in Lagrangian coordinates. Combining weighted entropy estimates with an iteration technique `a la Stampacchia leads to upper bounds on free boundary propagation. Numerical simulations show that the phenomenon is already clearly visible for relatively coarse discretizations.



قيم البحث

اقرأ أيضاً

We establish sharp criteria for the instantaneous propagation of free boundaries in solutions to the thin-film equation. The criteria are formulated in terms of the initial distribution of mass (as opposed to previous almost-optimal results), reflect ing the fact that mass is a locally conserved quantity for the thin-film equation. In the regime of weak slippage, our criteria are at the same time necessary and sufficient. The proof of our upper bounds on free boundary propagation is based on a strategy of propagation of degeneracy down to arbitrarily small spatial scales: We combine estimates on the local mass and estimates on energies to show that degeneracy on a certain space-time cylinder entails degeneracy on a spatially smaller space-time cylinder with the same time horizon. The derivation of our lower bounds on free boundary propagation is based on a combination of a monotone quantity and almost optimal estimates established previously by the second author with a new estimate connecting motion of mass to entropy production.
The singular limit of the thin film Muskat problem is performed when the density (and possibly the viscosity) of the lighter fluid vanishes and the porous medium equation is identified as the limit problem. In particular, the height of the denser flu id is shown to converge towards the solution to the porous medium equation and an explicit rate for this convergence is provided in space dimension d $le$ 4. Moreover, the limit of the height of the lighter fluid is determined in a certain regime and is given by the corresponding initial condition.
93 - Shubin Fu , Zhidong Zhang 2020
In this work, an inverse problem in the fractional diffusion equation with random source is considered. The measurements used are the statistical moments of the realizations of single point data $u(x_0,t,omega).$ We build the representation of the so lution $u$ in integral sense, then prove that the unknowns can be bounded by the moments theoretically. For the numerical reconstruction, we establish an iterative algorithm with regularized Levenberg-Marquardt type and some numerical results generated from this algorithm are displayed. For the case of highly heterogeneous media, the Generalized Multiscale finite element method (GMsFEM) will be employed.
We introduce a fractional variant of the Cahn-Hilliard equation settled in a bounded domain $Omega$ of $R^N$ and complemented with homogeneous Dirichlet boundary conditions of solid type (i.e., imposed in the entire complement of $Omega$). After sett ing a proper functional framework, we prove existence and uniqueness of weak solutions to the related initial-boundary value problem. Then, we investigate some significant singular limits obtained as the order of either of the fractional Laplacians appearing in the equation is let tend to 0. In particular, we can rigorously prove that the fractional Allen-Cahn, fractional porous medium, and fractional fast-diffusion equations can be obtained in the limit. Finally, in the last part of the paper, we discuss existence and qualitative properties of stationary solutions of our problem and of its singular limits.
We derive boundary conditions and estimates based on the energy and entropy analysis of systems of the nonlinear shallow water equations in two spatial dimensions. It is shown that the energy method provides more details, but is fully consistent with the entropy analysis. The details brought forward by the nonlinear energy analysis allow us to pinpoint where the difference between the linear and nonlinear analysis originate. We find that the result from the linear analysis does not necessarily hold in the nonlinear case. The nonlinear analysis leads in general to a different minimal number of boundary conditions compared with the linear analysis. In particular, and contrary to the linear case, the magnitude of the flow does not influence the number of required boundary conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا