ﻻ يوجد ملخص باللغة العربية
We establish sharp criteria for the instantaneous propagation of free boundaries in solutions to the thin-film equation. The criteria are formulated in terms of the initial distribution of mass (as opposed to previous almost-optimal results), reflecting the fact that mass is a locally conserved quantity for the thin-film equation. In the regime of weak slippage, our criteria are at the same time necessary and sufficient. The proof of our upper bounds on free boundary propagation is based on a strategy of propagation of degeneracy down to arbitrarily small spatial scales: We combine estimates on the local mass and estimates on energies to show that degeneracy on a certain space-time cylinder entails degeneracy on a spatially smaller space-time cylinder with the same time horizon. The derivation of our lower bounds on free boundary propagation is based on a combination of a monotone quantity and almost optimal estimates established previously by the second author with a new estimate connecting motion of mass to entropy production.
Various degenerate diffusion equations exhibit a waiting time phenomenon: Dependening on the flatness of the compactly supported initial datum at the boundary of the support, the support of the solution may not expand for a certain amount of time. We
We consider a nonlinear 4th-order degenerate parabolic partial differential equation that arises in modelling the dynamics of an incompressible thin liquid film on the outer surface of a rotating horizontal cylinder in the presence of gravity. The pa
We investigate the existence and the boundary regularity of source-type self-similar solutions to the thin-film equation $h_t=-(h^nh_{zzz})_z+(h^{n+3})_{zz},$ $ t>0,, zin R;, h(0,z)= M delta$ where $nin (3/2,3),, M > 0$ and $delta$ is the Dirac mass
We investigate the large time behavior of compactly supported solutions for a one-dimensional thin-film equation with linear mobility in the regime of partial wetting. We show the stability of steady state solutions. The proof uses the Lagrangian coo
This paper deals with a nonlinear degenerate parabolic equation of order $alpha$ between 2 and 4 which is a kind of fractional version of the Thin Film Equation. Actually, this one corresponds to the limit value $alpha=4$ while the Porous Medium Equa