ترغب بنشر مسار تعليمي؟ اضغط هنا

Classification on the Computational Complexity of Spin Models

147   0   0.0 ( 0 )
 نشر من قبل Shi-Xin Zhang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Shi-Xin Zhang




اسأل ChatGPT حول البحث

In this note, we provide a unifying framework to investigate the computational complexity of classical spin models and give the full classification on spin models in terms of system dimensions, randomness, external magnetic fields and types of spin coupling. We further discuss about the implications of NP-complete Hamiltonian models in physics and the fundamental limitations of all numerical methods imposed by such models. We conclude by a brief discussion on the picture when quantum computation and quantum complexity theory are included.



قيم البحث

اقرأ أيضاً

Quantum Monte Carlo simulations, while being efficient for bosons, suffer from the negative sign problem when applied to fermions - causing an exponential increase of the computing time with the number of particles. A polynomial time solution to the sign problem is highly desired since it would provide an unbiased and numerically exact method to simulate correlated quantum systems. Here we show, that such a solution is almost certainly unattainable by proving that the sign problem is NP-hard, implying that a generic solution of the sign problem would also solve all problems in the complexity class NP (nondeterministic polynomial) in polynomial time.
We study AKLT models on locally tree-like lattices of fixed connectivity and find that they exhibit a variety of ground states depending upon the spin, coordination and global (graph) topology. We find a) quantum paramagnetic or valence bond solid gr ound states, b) critical and ordered Neel states on bipartite infinite Cayley trees and c) critical and ordered quantum vector spin glass states on random graphs of fixed connectivity. We argue, in consonance with a previous analysis, that all phases are characterized by gaps to local excitations. The spin glass states we report arise from random long ranged loops which frustrate Neel ordering despite the lack of randomness in the coupling strengths.
We discuss the connection between computational social choice (comsoc) and computational complexity. We stress the work so far on, and urge continued focus on, two less-recognized aspects of this connection. Firstly, this is very much a two-way stree t: Everyone knows complexity classification is used in comsoc, but we also highlight benefits to complexity that have arisen from its use in comsoc. Secondly, more subtle, less-known complexity tools often can be very productively used in comsoc.
While macroscopic properties of spin glasses have been thoroughly investigated, their manifestation in the corresponding microscopic configurations is much less understood. Cases where both descriptions have been provided, such as constraint satisfac tion problems, are limited to their ground state properties. To identify the emerging microscopic structures with macroscopic phases at different temperatures, we study the $p$-spin model with $p!=!3$. We investigate the properties of self-sustained clusters, defined as variable sets where in-cluster induced fields dominate over the field induced by out-cluster spins, giving rise to stable configurations with respect to fluctuations. We compute the entropy of self-sustained clusters as a function of temperature and their sizes. In-cluster fields properties and the difference between in-cluster and out-cluster fields support the observation of slow-evolving spins in spin models. The findings are corroborated by observations in finite dimensional lattices at low temperatures.
Neutron scattering experiments on a polycrystalline sample of the frustrated pyrochlore magnet Tb2Ti2O7, which does not show any magnetic order down to 50 mK, have revealed that it shows condensation behavior below 0.4 K from a thermally fluctuating paramagnetic state to a spin-liquid ground-state with quantum spin fluctuations. Energy spectra change from quasielastic scattering to a continuum with a double-peak structure at energies of 0 and 0.8 K in the spin-liquid state. Specific heat shows an anomaly at the crossover temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا