ﻻ يوجد ملخص باللغة العربية
While macroscopic properties of spin glasses have been thoroughly investigated, their manifestation in the corresponding microscopic configurations is much less understood. Cases where both descriptions have been provided, such as constraint satisfaction problems, are limited to their ground state properties. To identify the emerging microscopic structures with macroscopic phases at different temperatures, we study the $p$-spin model with $p!=!3$. We investigate the properties of self-sustained clusters, defined as variable sets where in-cluster induced fields dominate over the field induced by out-cluster spins, giving rise to stable configurations with respect to fluctuations. We compute the entropy of self-sustained clusters as a function of temperature and their sizes. In-cluster fields properties and the difference between in-cluster and out-cluster fields support the observation of slow-evolving spins in spin models. The findings are corroborated by observations in finite dimensional lattices at low temperatures.
To identify emerging microscopic structures in low temperature spin glasses, we study self-sustained clusters (SSC) in spin models defined on sparse random graphs. A message-passing algorithm is developed to determine the probability of individual sp
We investigate the computational hardness of spin-glass instances on a square lattice, generated via a recently introduced tunable and scalable approach for planting solutions. The method relies on partitioning the problem graph into edge-disjoint su
In this note, we provide a unifying framework to investigate the computational complexity of classical spin models and give the full classification on spin models in terms of system dimensions, randomness, external magnetic fields and types of spin c
We consider the random fluctuations of the free energy in the $p$-spin version of the Sherrington-Kirkpatrick model in the high temperature regime. Using the martingale approach of Comets and Neveu as used in the standard SK model combined with trunc
We study both classical and quantum algorithms to solve a hard optimization problem, namely 3-XORSAT on 3-regular random graphs. By introducing a new quasi-greedy algorithm that is not allowed to jump over large energy barriers, we show that the prob