ﻻ يوجد ملخص باللغة العربية
We measure the photoelectron energy spectra from strong-field ionization of Kr in a two-color laser pulse consisting of a strong 400-nm field and a weak 800-nm field. The intensities of the main above-threshold ionization (ATI) and sideband peaks in the photoelectron energy spectra oscillate roughly oppositely with respect to the relative phase between the two-color components. We study the photoelectron interferometry in strong-field ATI regime from the view of interference of different electron trajectories in order to extend RABBITT type analysis to the strong-field regime. Based on the strong-field approximation model, we obtain analytical expressions for the oscillations of both ATI and sideband peaks with the relative phase. A phase shift of pi/4 with respect to the field maximum of the two-color laser pulse is revealed for the interference maximum in the main ATI peak without including the effect of the atomic potential.
Coherence among rotational ion channels during photoionization is exploited to control the anisotropy of the resulting photoelectron angular distributions at specific photoelectron energies. The strategy refers to a robust and single parameter contro
Recently demonstrated ghost interference using correlated photons of different frequencies, has been theoretically analyzed. The calculation predicts an interesting nonlocal effect: the fringe width of the ghost interference depends not only on the w
We analyzed the two-dimensional (2D) electron momentum distributions of high-energy photoelectrons of atoms in an intense laser field using the second-order strong field approximation (SFA2). The SFA2 accounts for the rescattering of the returning el
We study numerically stabilization against ionization of a fully correlated two-electron model atom in an intense laser pulse. We concentrate on two frequency regimes: very high frequency, where the photon energy exceeds both, the ionization potentia
We report on three-dimensional (3D) electron momentum distributions from single ionization of helium by a laser pulse consisting of two counterrotating circularly polarized fields (390 nm and 780 nm). A pronounced 3D low energy structure and sub-cycl