ﻻ يوجد ملخص باللغة العربية
Recently demonstrated ghost interference using correlated photons of different frequencies, has been theoretically analyzed. The calculation predicts an interesting nonlocal effect: the fringe width of the ghost interference depends not only on the wave-length of the photon involved, but also on the wavelength of the other photon with which it is entangled. This feature, arising because of different frequencies of the entangled photons, was hidden in the original ghost interference experiment. This prediction can be experimentally tested in a slightly modified version of the experiment.
We report on an experimental observation of a two-photon ghost interference experiment. A distinguishing feature of our experiment is that the photons are generated via a non-degenerated spontaneous four-wave mixing process in a hot atomic ensemble;
The ghost interference observed for entangled photons is theoretically analyzed using wave-packet dynamics. It is shown that ghost interference is a combined effect of virtual double-slit creation due to entanglement, and quantum erasure of which-pat
In classical optics, Youngs double-slit experiment with colored coherent light gives rise to individual interference fringes for each light frequency, referring to single-photon interference. However, two-photon double-slit interference has been wide
The two-photon ghost interference experiment, generalized to the case of massive particles, is theoretically analyzed. It is argued that the experiment is intimately connected to a double-slit interference experiment where, the which-path information
We measure the photoelectron energy spectra from strong-field ionization of Kr in a two-color laser pulse consisting of a strong 400-nm field and a weak 800-nm field. The intensities of the main above-threshold ionization (ATI) and sideband peaks in