ﻻ يوجد ملخص باللغة العربية
Learning optimal resource allocation policies in wireless systems can be effectively achieved by formulating finite dimensional constrained programs which depend on system configuration, as well as the adopted learning parameterization. The interest here is in cases where system models are unavailable, prompting methods that probe the wireless system with candidate policies, and then use observed performance to determine better policies. This generic procedure is difficult because of the need to cull accurate gradient estimates out of these limited system queries. This paper constructs and exploits smoothed surrogates of constrained ergodic resource allocation problems, the gradients of the former being representable exactly as averages of finite differences that can be obtained through limited system probing. Leveraging this unique property, we develop a new model-free primal-dual algorithm for learning optimal ergodic resource allocations, while we rigorously analyze the relationships between original policy search problems and their surrogates, in both primal and dual domains. First, we show that both primal and dual domain surrogates are uniformly consistent approximations of their corresponding original finite dimensional counterparts. Upon further assuming the use of near-universal policy parameterizations, we also develop explicit bounds on the gap between optimal values of initial, infinite dimensional resource allocation problems, and dual values of their parameterized smoothed surrogates. In fact, we show that this duality gap decreases at a linear rate relative to smoothing and universality parameters. Thus, it can be made arbitrarily small at will, also justifying our proposed primal-dual algorithmic recipe. Numerical simulations confirm the effectiveness of our approach.
In this paper, we study the learning of safe policies in the setting of reinforcement learning problems. This is, we aim to control a Markov Decision Process (MDP) of which we do not know the transition probabilities, but we have access to sample tra
Vehicle tracking has become one of the key applications of wireless sensor networks (WSNs) in the fields of rescue, surveillance, traffic monitoring, etc. However, the increased tracking accuracy requires more energy consumption. In this letter, a de
Risk-aware control, though with promise to tackle unexpected events, requires a known exact dynamical model. In this work, we propose a model-free framework to learn a risk-aware controller with a focus on the linear system. We formulate it as a disc
State estimation is critical to control systems, especially when the states cannot be directly measured. This paper presents an approximate optimal filter, which enables to use policy iteration technique to obtain the steady-state gain in linear Gaus
Unmanned aerial vehicles (UAVs) have emerged as a promising candidate solution for data collection of large-scale wireless sensor networks (WSNs). In this paper, we investigate a UAV-aided WSN, where cluster heads (CHs) receive data from their member