ﻻ يوجد ملخص باللغة العربية
Clusters of galaxies, the largest bound objects in the Universe, constitute a cosmological probe of choice, which is sensitive to both dark matter and dark energy. Within this framework, the Sunyaev-Zeldovich (SZ) effect has opened a new window for the detection of clusters of galaxies and for the characterization of their physical properties such as mass, pressure and temperature. NIKA, a KID-based dual band camera installed at the IRAM 30-m telescope, was particularly well adapted in terms of frequency, angular resolution, field-of-view and sensitivity, for the mapping of the thermal and kinetic SZ effect in high-redshift clusters. In this paper, we present the NIKA cluster sample and a review of the main results obtained via the measurement of the SZ effect on those clusters: reconstruction of the cluster radial pressure profile, mass, temperature and velocity.
Sub-structures in the hot gas of galaxy clusters are related to their formation history and to the astrophysical processes at play in the intracluster medium (ICM). The thermal Sunyaev-Zeldovich (tSZ) effect is directly sensitive to the line-of-sight
Starting from a covariant formalism of the Sunyaev-Zeldovich effect for the thermal and non-thermal distributions, we derive the frequency redistribution function identical to Wrights method assuming the smallness of the photon energy (in the Thomson
The determination of the morphology of galaxy clusters has important repercussion on their cosmological and astrophysical studies. In this paper we address the morphological characterisation of synthetic maps of the Sunyaev--Zeldovich (SZ) effect pro
Based upon the rate equations for the photon distribution function obtained in the previous paper, we study the formal solutions in three different representation forms for the Sunyaev-Zeldovich effect. By expanding the formal solution in the operato
We have exploited the large-volume Millennium Gas cosmological N-body hydrodynamics simulations to study the SZ cluster population at low and high redshift, for three models with varying gas physics. We confirm previous results using smaller samples