ﻻ يوجد ملخص باللغة العربية
The determination of the morphology of galaxy clusters has important repercussion on their cosmological and astrophysical studies. In this paper we address the morphological characterisation of synthetic maps of the Sunyaev--Zeldovich (SZ) effect produced for a sample of 258 massive clusters ($M_{vir}>5times10^{14}h^{-1}$M$_odot$ at $z=0$), extracted from the MUSIC hydrodynamical simulations. Specifically, we apply five known morphological parameters, already used in X-ray, two newly introduced ones, and we combine them together in a single parameter. We analyse two sets of simulations obtained with different prescriptions of the gas physics (non radiative and with cooling, star formation and stellar feedback) at four redshifts between 0.43 and 0.82. For each parameter we test its stability and efficiency to discriminate the true cluster dynamical state, measured by theoretical indicators. The combined parameter discriminates more efficiently relaxed and disturbed clusters. This parameter had a mild correlation with the hydrostatic mass ($sim 0.3$) and a strong correlation ($sim 0.8$) with the offset between the SZ centroid and the cluster centre of mass. The latter quantity results as the most accessible and efficient indicator of the dynamical state for SZ studies.
The masses of galaxy clusters are a key tool to constrain cosmology through the physics of large-scale structure formation and accretion. Mass estimates based on X-ray and Sunyaev--Zeldovich measurements have been found to be affected by the contribu
Starting from a covariant formalism of the Sunyaev-Zeldovich effect for the thermal and non-thermal distributions, we derive the frequency redistribution function identical to Wrights method assuming the smallness of the photon energy (in the Thomson
At high angular frequencies, beyond the damping tail of the primary power spectrum, the dominant contribution to the power spectrum of cosmic microwave background (CMB) temperature fluctuations is the thermal Sunyaev-Zeldovich (tSZ) effect. We invest
Based upon the rate equations for the photon distribution function obtained in the previous paper, we study the formal solutions in three different representation forms for the Sunyaev-Zeldovich effect. By expanding the formal solution in the operato
We present the results of optical identifications and spectroscopic redshifts measurements for galaxy clusters from 2-nd Planck catalogue of Sunyaev-Zeldovich sources (PSZ2), located at high redshifts, $zapprox0.7-0.9$. We used the data of optical ob