ﻻ يوجد ملخص باللغة العربية
We study a class of models of i.i.d.~random environments in general dimensions $dge 2$, where each site is equipped randomly with an environment, and a parameter $p$ governs the frequency of certain environments that can act as a barrier. We show that many of these models (including some which are non-monotone in $p$) exhibit a sharp phase transition for the geometry of connected clusters as $p$ varies.
We study continuous-time (variable speed) random walks in random environments on $mathbb{Z}^d$, $dge2$, where, at time $t$, the walk at $x$ jumps across edge $(x,y)$ at time-dependent rate $a_t(x,y)$. The rates, which we assume stationary and ergodic
We study an evolving spatial network in which sequentially arriving vertices are joined to existing vertices at random according to a rule that combines preference according to degree with preference according to spatial proximity. We investigate pha
Products of $M$ i.i.d. non-Hermitian random matrices of size $N times N$ relate Gaussian fluctuation of Lyapunov and stability exponents in dynamical systems (finite $N$ and large $M$) to local eigenvalue universality in random matrix theory (finite
We study phase transition and percolation at criticality for three random graph models on the plane, viz., the homogeneous and inhomogeneous enhanced random connection models (RCM) and the Poisson stick model. These models are built on a homogeneous
We first study a model, introduced recently in cite{ES}, of a critical branching random walk in an IID random environment on the $d$-dimensional integer lattice. The walker performs critical (0-2) branching at a lattice point if and only if there is