ترغب بنشر مسار تعليمي؟ اضغط هنا

21cm Global Signal Extraction: Extracting the 21cm Global Signal using Artificial Neural Networks

107   0   0.0 ( 0 )
 نشر من قبل Madhurima Choudhury
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The study of the cosmic Dark Ages, Cosmic Dawn, and Epoch of Reionization (EoR) using the all-sky averaged redshifted HI 21cm signal, are some of the key science goals of most of the ongoing or upcoming experiments, for example, EDGES, SARAS, and the SKA. This signal can be detected by averaging over the entire sky, using a single radio telescope, in the form of a Global signal as a function of only redshifted HI 21cm frequencies. One of the major challenges faced while detecting this signal is the dominating, bright foreground. The success of such detection lies in the accuracy of the foreground removal. The presence of instrumental gain fluctuations, chromatic primary beam, radio frequency interference (RFI) and the Earths ionosphere corrupts any observation of radio signals from the Earth. Here, we propose the use of Artificial Neural Networks (ANN) to extract the faint redshifted 21cm Global signal buried in a sea of bright Galactic foregrounds and contaminated by different instrumental models. The most striking advantage of using ANN is the fact that, when the corrupted signal is fed into a trained network, we can simultaneously extract the signal as well as foreground parameters very accurately. Our results show that ANN can detect the Global signal with $gtrsim 92 %$ accuracy even in cases of mock observations where the instrument has some residual time-varying gain across the spectrum.



قيم البحث

اقرأ أيضاً

Superconducting cosmic strings emit electromagnetic waves between the times of recombination and reionization. Hence, they have an effect on the global 21cm signal. We compute the resulting absorption features, focusing on strings with critical curre nt, study their dependence on the string tension $mu$, and compare with observational results. For string tensions in the range of $G mu = 10^{-10}$, where $G$ is Newtons gravitational constant, there is an interesting amplification of the two characteristic absorption features, one during the cosmic dawn, $z lesssim 30$, and the other during the cosmic dark age, $z sim 80$, the former being comparable in amplitude to what was observed by the EDGES experiment.
We argue that the global signal of neutral hydrogen 21cm line can be a powerful probe of primordial power spectrum on small scales. Since the amplitude of small scale primordial fluctuations is important to determine the early structure formation and the timing when the sources of Lyman ${alpha}$ photons are produced, they in turn affect the neutral hydrogen 21cm line signal. We show that the information of the position of the absorption trough can severely constrain the small scale amplitude of primordial fluctuations once astrophysical parameters relevant to the 21cm line signal are fixed. We also discuss how the uncertainties of astrophysical parameters affect the constraints.
The redshifted 21-cm signal of neutral Hydrogen is a promising probe into the period of evolution of our Universe when the first stars were formed (Cosmic Dawn), to the period where the entire Universe changed its state from being completely neutral to completely ionized (Reionization). The most striking feature of this line of neutral Hydrogen is that it can be observed across an entire frequency range as a sky-averaged continuous signature, or its fluctuations can be measured using an interferometer. However, the 21-cm signal is very faint and is dominated by a much brighter Galactic and extra-galactic foregrounds, making it an observational challenge. We have used different physical models to simulate various realizations of the 21-cm Global signals, including an excess radio background to match the amplitude of the EDGES 21-cm signal. First, we have used an artificial neural network (ANN) to extract the astrophysical parameters from these simulated datasets. Then, mock observations were generated by adding a physically motivated foreground model and an ANN was used to extract the astrophysical parameters from such data. The $R^2$ score of our predictions from the mock-observations is in the range of 0.65-0.89. We have used this ANN to predict the signal parameters giving the EDGES data as the input. We find that the reconstructed signal closely mimics the amplitude of the reported detection. The recovered parameters can be used to infer the physical state of the gas at high redshifts.
We present the first results from SPHINX-MHD, a suite of cosmological radiation-magnetohydrodynamics simulations designed to study the impact of primordial magnetic fields (PMFs) on galaxy formation and the evolution of the intergalactic medium durin g the epoch of reionization. The simulations are among the first to employ multi-frequency, on-the-fly radiation transfer and constrained transport ideal MHD in a cosmological context to simultaneously model the inhomogeneous process of reionization as well as the growth of PMFs. We run a series of $(5,text{cMpc})^3$ cosmological volumes, varying both the strength of the seed magnetic field ($B_0$) and its spectral index ($n_B$). We find that PMFs that have $n_B > -0.562log_{10}left(frac{B_0}{1{rm n}G}right) - 3.35$ produce electron optical depths ($tau_e$) that are inconsistent with CMB constraints due to the unrealistically early collapse of low-mass dwarf galaxies. For $n_Bgeq-2.9$, our constraints are considerably tighter than the $sim{rm n}G$ constraints from Planck. PMFs that do not satisfy our constraints have little impact on the reionization history or the shape of the UV luminosity function. Likewise, detecting changes in the Lya forest due to PMFs will be challenging because photoionisation and photoheating efficiently smooth the density field. However, we find that the first absorption feature in the global 21cm signal is a sensitive indicator of the properties of the PMFs, even for those that satisfy our $tau_e$ constraint. Furthermore, strong PMFs can marginally increase the escape of LyC photons by up to 25% and shrink the effective radii of galaxies by $sim44%$ which could increase the completeness fraction of galaxy surveys. Finally, our simulations show that surveys with a magnitude limit of ${rm M_{UV,1500}=-13}$ can probe the sources that provide the majority of photons for reionization out to $z=12$.
We investigate the hypothesis that Coulomb-type interactions between dark matter (DM) and baryons explain the anomalously low 21cm brightness-temperature minimum at redshift z ~ 17 that was recently measured by the EDGES experiment. In particular, we reassess the validity of the scenario where a small fraction of the total DM is millicharged, focusing on newly derived constraints from Planck 2015 cosmic microwave background (CMB) data. Crucially, the CMB power spectrum is sensitive to DM-baryon scattering if the fraction of interacting DM is larger than (or comparable to) the fractional uncertainty in the baryon energy density. Meanwhile, there is a mass-dependent lower limit on the fraction for which the required interaction to cool the baryons sufficiently is so strong that it drives the interacting-DM temperature to the baryon temperature prior to their decoupling from the CMB. If this occurs as early as recombination, the cooling saturates. We precisely determine the viable parameter space for millicharged DM, and find that only a fraction (m_chi/MeV) 0.0115% <~ f <~ 0.4% of the entire DM content, and only for DM-particle masses between 0.5 MeV - 35 MeV, can be charged at the level needed to marginally explain the anomaly, without violating limits from SLAC, CMB, Big-Bang nucleosynthesis (BBN), or stellar and SN1987A cooling. In reality, though, we demonstrate that at least moderate fine tuning is required to both agree with the measured absorption profile and overcome various astrophysical sources of heating. Finally, we point out that a ~0.4% millicharged DM component which is tightly coupled to the baryons at recombination may resolve the current 2-sigma tension between the BBN and CMB determinations of the baryon energy density. Future CMB-S4 measurements will be able to probe this scenario directly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا