ﻻ يوجد ملخص باللغة العربية
We investigate the hypothesis that Coulomb-type interactions between dark matter (DM) and baryons explain the anomalously low 21cm brightness-temperature minimum at redshift z ~ 17 that was recently measured by the EDGES experiment. In particular, we reassess the validity of the scenario where a small fraction of the total DM is millicharged, focusing on newly derived constraints from Planck 2015 cosmic microwave background (CMB) data. Crucially, the CMB power spectrum is sensitive to DM-baryon scattering if the fraction of interacting DM is larger than (or comparable to) the fractional uncertainty in the baryon energy density. Meanwhile, there is a mass-dependent lower limit on the fraction for which the required interaction to cool the baryons sufficiently is so strong that it drives the interacting-DM temperature to the baryon temperature prior to their decoupling from the CMB. If this occurs as early as recombination, the cooling saturates. We precisely determine the viable parameter space for millicharged DM, and find that only a fraction (m_chi/MeV) 0.0115% <~ f <~ 0.4% of the entire DM content, and only for DM-particle masses between 0.5 MeV - 35 MeV, can be charged at the level needed to marginally explain the anomaly, without violating limits from SLAC, CMB, Big-Bang nucleosynthesis (BBN), or stellar and SN1987A cooling. In reality, though, we demonstrate that at least moderate fine tuning is required to both agree with the measured absorption profile and overcome various astrophysical sources of heating. Finally, we point out that a ~0.4% millicharged DM component which is tightly coupled to the baryons at recombination may resolve the current 2-sigma tension between the BBN and CMB determinations of the baryon energy density. Future CMB-S4 measurements will be able to probe this scenario directly.
The EDGES experiment has observed an excess trough ($-500^{+200}_{-500}$ mK) in the brightness temperature $T_{21}$ of the 21cm absorption line of neutral Hydrogen atom (HI) from the era of cosmic dawn ($z simeq 17.2$). We consider possible interacti
We present forecasts on the detectability of Ultra-light axion-like particles (ULAP) from future 21cm radio observations around the epoch of reionization (EoR). We show that the axion as the dominant dark matter component has a significant impact on
We explore the model-independent constraints from cosmology on a dark-matter particle with no prominent standard model interactions that interacts and thermalizes with other particles in a hidden sector. Without specifying detailed hidden-sector part
Heat transfer between baryons and millicharged dark matter has been invoked as a possible explanation for the anomalous 21-cm absorption signal seen by EDGES. Prior work has shown that the solution requires that millicharged particles make up only a
If the symmetry breaking inducing the axion occurs after the inflation, the large axion isocurvature perturbations can arise due to a different axion amplitude in each causally disconnected patch. This causes the enhancement of the small-scale densit