ﻻ يوجد ملخص باللغة العربية
The distribution of the circumstellar material in systems of supergiant X-ray binaries (SgXBs) is complex and not well probed observationally. We report a detailed study of the spatial distribution of the Fe K{alpha}-emitting material in the wind-fed system GX 301-2, by measuring the time delay between the Fe K{alpha} line and the hard X-ray continuum (7.8-12 keV) using the cross-correlation method, based on XMM-Newton observation. We found that to obtain the true time delay, it is crucial to subtract the underlying continuum of the Fe K{alpha} line. The measured size of the Fe K{alpha}-emitting region over the whole observation period is 40 {pm} 20 light-seconds. It is 5 times larger than the accretion radius estimated from a quasi-isotropic stellar wind, but consistent with the one estimated from a tidal stream, which could be the dominant mass-loss mechanism of GX 301-2 as inferred from the orbital distribution of the absorption column density previously. The measured time delay of the quiescent period is a little smaller than those of the flare periods, revealing the unsteady behaviour of the accretion flow in GX 301-2. Statistical and detailed temporal studies of the circumstellar material in SgXBs are expected for a large sample of SgXBs with future X-ray missions, such as Athena and eXTP.
GX 301-2 provides a rare opportunity to study both disk and wind accretion in a same target. We report Insight-HXMT observations of the spin-up event of GX 301-2 happened in 2019 and compare with those of wind-fed state. The pulse profiles of the ini
We present two observations of the high-mass X-ray binary GX 301-2 with NuSTAR, taken at different orbital phases and different luminosities. We find that the continuum is well described by typical phenomenological models, like a very strongly absorb
We report on the detection of a pulsating Fe Ka line in the High Mass X-ray Binary (HMXB) GX 301-2, from a 40-ks Chandra observation near periastron. The pulsations in the Fe Ka emission appeared only in the first 7 ks of the observation, with a peri
Recently a retrograde neutron star is proposed for the classical wind-fed X-ray pulsar, GX 301-2, to explain the orbital spin-up to spin-down reversal near periastron, based on the stream model invoked to explain the pre-periastron flare of GX 301-2
We present the results of an in-depth study of the long-period X-ray pulsar GX 301-2. Using archival data of INTEGRAL, RXTE ASM, and CGRO BATSE, we study the spectral and timing properties of the source. Comparison of our timing results with previous