ﻻ يوجد ملخص باللغة العربية
We report on the detection of a pulsating Fe Ka line in the High Mass X-ray Binary (HMXB) GX 301-2, from a 40-ks Chandra observation near periastron. The pulsations in the Fe Ka emission appeared only in the first 7 ks of the observation, with a period and phase profile similar to those of the continuum. The presence of pulsed fluorescent lines is an unusual property in HMXBs. After 7 ks, the continuum flux increased by a factor of three, the Fe Ka flux increased only by about 10%, and the pulsating signal in the line disappeared. Finally, in the second half of the observation, both the continuum and the line flux dropped by a similar factor of 2. We suggest that the pulsating component of the Fe Ka line is coming from a transient non-isotropic distribution of dense gas around the neutron star, for example an accretion stream induced by periastron passage, or from the illuminated surface of the donor star.
We present two observations of the high-mass X-ray binary GX 301-2 with NuSTAR, taken at different orbital phases and different luminosities. We find that the continuum is well described by typical phenomenological models, like a very strongly absorb
We present the results of an in-depth study of the long-period X-ray pulsar GX 301-2. Using archival data of INTEGRAL, RXTE ASM, and CGRO BATSE, we study the spectral and timing properties of the source. Comparison of our timing results with previous
X-ray fluorescent lines are unique features of the reflection spectrum of the cold torus when irradiated by the central AGN. Their intrinsic line widths can be used to probe the line-emitting region. The line widths of the Fe Ka line measured from th
GX 301-2 provides a rare opportunity to study both disk and wind accretion in a same target. We report Insight-HXMT observations of the spin-up event of GX 301-2 happened in 2019 and compare with those of wind-fed state. The pulse profiles of the ini
We investigate the absorption and emission features in observations of GX 301-2 detected with Insight-HXMT/LE in 2017-2019. At different orbital phases, we found prominent Fe Kalpha, Kbeta and Ni Kalpha lines, as well as Compton shoulders and Fe K-sh