ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate Kondratiev spaces on domains of polyhedral type. In particular, we will be concerned with necessary and sufficient conditions for continuous and compact embeddings, and in addition we shall deal with pointwise multiplication in these spaces.
We obtain several new characterizations of ultrametric spaces in terms of roundness, generalized roundness, strict p-negative type, and p-polygonal equalities (p > 0). This allows new insight into the isometric embedding of ultrametric spaces into Eu
In this paper, we study minimality properties of partly modified mixed Tsirelson spaces. A Banach space with a normalized basis (e_k) is said to be subsequentially minimal if for every normalized block basis (x_k) of (e_k), there is a further block (
We study the dynamics of the group of isometries of $L_p$-spaces. In particular, we study the canonical actions of these groups on the space of $delta$-isometric embeddings of finite dimensional subspaces of $L_p(0,1)$ into itself, and we show that f
In this paper, for a locally compact commutative hypergroup $K$ and for a pair $(Phi_1, Phi_2)$ of Young functions satisfying sequence condition, we give a necessary condition in terms of aperiodic elements of the center of $K,$ for the convolution $
A notion of resolvent set for an operator acting in a rigged Hilbert space $D subset Hsubset D^times$ is proposed. This set depends on a family of intermediate locally convex spaces living between $D$ and $D^times$, called interspaces. Some propertie