ﻻ يوجد ملخص باللغة العربية
In this paper, we study equivalences between the categories of quasi-coherent sheaves on non-commutative noetherian schemes. In particular, give a new proof of Caldararus conjecture about Morita equivalences of Azumaya algebras on noetherian schemes. Moreover, we derive necessary and sufficient condition for two reduced non-commutative curves to be Morita equivalent.
In this article we develop the theory of minors of non-commutative schemes. This study is motivated by applications in the theory of non-commutative resolutions of singularities of commutative schemes. In particular, we construct a categorical resolu
In this paper, we develop a geometric approach to study derived tame finite dimensional associative algebras, based on the theory of non-commutative nodal curves.
In arXiv:0907.3784, we introduced a variant of non-commutative Donaldson-Thomas theory in a combinatorial way, which is related with topological vertex by a wall-crossing phenomenon. In this paper, we (1) provide an alternative definition in a geomet
Let R be a non-commutative field. We prove that generic triples of flags in an m-dimensional R-vector space are described by flat R-line bundles on the honeycomb graph with (m-1)(m-2)/2 holes. Generalising this, we prove that the non-commutative mo
We describe new classes of noetherian local rings $R$ whose finitely generated modules $M$ have the property that $Tor_i^R(M,M)=0$ for $igg 0$ implies that $M$ has finite projective dimension, or $Ext^i_R(M,M)=0$ for $igg 0$ implies that $M$ has fini