ترغب بنشر مسار تعليمي؟ اضغط هنا

Leveraging Pretrained Image Classifiers for Language-Based Segmentation

101   0   0.0 ( 0 )
 نشر من قبل David Golub
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Current semantic segmentation models cannot easily generalize to new object classes unseen during train time: they require additional annotated images and retraining. We propose a novel segmentation model that injects visual priors into semantic segmentation architectures, allowing them to segment out new target labels without retraining. As visual priors, we use the activations of pretrained image classifiers, which provide noisy indications of the spatial location of both the target object and distractor objects in the scene. We leverage language semantics to obtain these activations for a target label unseen by the classifier. Further experiments show that the visual priors obtained via language semantics for both relevant and distracting objects are key to our performance.



قيم البحث

اقرأ أيضاً

We consider the problem of segmenting image regions given a natural language phrase, and study it on a novel dataset of 77,262 images and 345,486 phrase-region pairs. Our dataset is collected on top of the Visual Genome dataset and uses the existing annotations to generate a challenging set of referring phrases for which the corresponding regions are manually annotated. Phrases in our dataset correspond to multiple regions and describe a large number of object and stuff categories as well as their attributes such as color, shape, parts, and relationships with other entities in the image. Our experiments show that the scale and diversity of concepts in our dataset poses significant challenges to the existing state-of-the-art. We systematically handle the long-tail nature of these concepts and present a modular approach to combine category, attribute, and relationship cues that outperforms existing approaches.
146 - Jun Chen , Han Guo , Kai Yi 2021
The ability to quickly learn from a small quantity oftraining data widens the range of machine learning applications. In this paper, we propose a data-efficient image captioning model, VisualGPT, which leverages the linguistic knowledge from a large pretrained language model(LM). A crucial challenge is to balance between the use of visual information in the image and prior linguistic knowledge acquired from pretraining. We designed a novel self-resurrecting encoder-decoder attention mechanism to quickly adapt the pretrained LM as the language decoder ona small amount of in-domain training data. The proposed self-resurrecting activation unit produces sparse activations but has reduced susceptibility to zero gradients. We train the proposed model, VisualGPT, on 0.1%, 0.5% and 1% of MSCOCO and Conceptual Captions training data. Under these conditions, we outperform the best baseline model by up to 10.8% CIDEr on MS COCO and upto 5.4% CIDEr on Conceptual Captions. Further, Visual-GPT achieves the state-of-the-art result on IU X-ray, a medical report generation dataset. To the best of our knowledge, this is the first work that improves data efficiency of image captioning by utilizing LM pretrained on unimodal data. Our code is available at: https://github.com/Vision-CAIR/VisualGPT.
We propose a new approach to interactive full-image semantic segmentation which enables quickly collecting training data for new datasets with previously unseen semantic classes (A demo is available at https://youtu.be/yUk8D5gEX-o). We leverage a key observation: propagation from labeled to unlabeled pixels does not necessarily require class-specific knowledge, but can be done purely based on appearance similarity within an image. We build on this observation and propose an approach capable of jointly propagating pixel labels from multiple classes without having explicit class-specific appearance models. To enable long-range propagation, our approach first globally measures appearance similarity between labeled and unlabeled pixels across the entire image. Then it locally integrates per-pixel measurements which improves the accuracy at boundaries and removes noisy label switches in homogeneous regions. We also design an efficient manual annotation interface that extends the traditional polygon drawing tools with a suite of additional convenient features (and add automatic propagation to it). Experiments with human annotators on the COCO Panoptic Challenge dataset show that the combination of our better manual interface and our novel automatic propagation mechanism leads to reducing annotation time by more than factor of 2x compared to polygon drawing. We also test our method on the ADE-20k and Fashionista datasets without making any dataset-specific adaptation nor retraining our model, demonstrating that it can generalize to new datasets and visual classes.
79 - Chen Liang , Yu Wu , Yawei Luo 2021
Text-based video segmentation is a challenging task that segments out the natural language referred objects in videos. It essentially requires semantic comprehension and fine-grained video understanding. Existing methods introduce language representa tion into segmentation models in a bottom-up manner, which merely conducts vision-language interaction within local receptive fields of ConvNets. We argue that such interaction is not fulfilled since the model can barely construct region-level relationships given partial observations, which is contrary to the description logic of natural language/referring expressions. In fact, people usually describe a target object using relations with other objects, which may not be easily understood without seeing the whole video. To address the issue, we introduce a novel top-down approach by imitating how we human segment an object with the language guidance. We first figure out all candidate objects in videos and then choose the refereed one by parsing relations among those high-level objects. Three kinds of object-level relations are investigated for precise relationship understanding, i.e., positional relation, text-guided semantic relation, and temporal relation. Extensive experiments on A2D Sentences and J-HMDB Sentences show our method outperforms state-of-the-art methods by a large margin. Qualitative results also show our results are more explainable. Besides, based on the inspiration, we win the first place in CVPR2021 Referring Youtube-VOS challenge.
Deep learning has shown promising results in medical image analysis, however, the lack of very large annotated datasets confines its full potential. Although transfer learning with ImageNet pre-trained classification models can alleviate the problem, constrained image sizes and model complexities can lead to unnecessary increase in computational cost and decrease in performance. As many common morphological features are usually shared by different classification tasks of an organ, it is greatly beneficial if we can extract such features to improve classification with limited samples. Therefore, inspired by the idea of curriculum learning, we propose a strategy for building medical image classifiers using features from segmentation networks. By using a segmentation network pre-trained on similar data as the classification task, the machine can first learn the simpler shape and structural concepts before tackling the actual classification problem which usually involves more complicated concepts. Using our proposed framework on a 3D three-class brain tumor type classification problem, we achieved 82% accuracy on 191 testing samples with 91 training samples. When applying to a 2D nine-class cardiac semantic level classification problem, we achieved 86% accuracy on 263 testing samples with 108 training samples. Comparisons with ImageNet pre-trained classifiers and classifiers trained from scratch are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا