ﻻ يوجد ملخص باللغة العربية
The first complete and explicit SO(1,9) Lorentz descriptions of all component fields contained in $mathcal{N} = 1$, $mathcal{N} = 2$A, and $mathcal{N} = 2$B unconstrained scalar 10D superfields are presented. These are made possible by the discovery of the relation of the superfield component expansion as a consequence of the branching rules of irreducible representations in one ordinary Lie algebra into one of its Lie subalgebras. Adinkra graphs for ten dimensional superspaces are defined for the first time, whose nodes depict spin bundle representations of SO(1,9). An analog of Breitenlohners approach is implemented to scan for superfields that contain graviton(s) and gravitino(s), which are the candidates for the prepotential superfields of 10D off-shell supergravity theories and separately abelian Yang-Mills theories are similarly treated. Version three contains additional content, both historical and conceptual, which broaden the reach of the scan in the 10D Yang-Mills case.
We present Adynkra Libraries that can be used to explore the embedding of multiplets of component field (whether on-shell or partial on-shell) within Salam-Strathdee superfields for theories in dimension nine through four.
Proposals are made to describe the Weyl scaling transformation laws of supercovariant derivatives $ abla{}_{underline A}$, the torsion supertensors $T{}_{{underline A} , {underline B}}{}^{{underline C}}$, and curvature supertensors $R{}_{{underline A
Starting from higher dimensional adinkras constructed with nodes referenced by Dynkin Labels, we define adynkras. These suggest a computationally direct way to describe the component fields contained within supermultiplets in all superspaces. We expl
We present a four-dimensional (4D) ${cal N}=1$ superfield description of supersymmetric Yang-Mills (SYM) theory in ten-dimensional (10D) spacetime with certain magnetic fluxes in compactified extra dimensions preserving partial ${cal N}=1$ supersymme
We give an explicit superspace construction of higher spin conserved supercurrents built out of $4D,mathcal{N}=1$ massless supermultiplets of arbitrary spin. These supercurrents are gauge invariant and generate a large class of cubic interactions bet