ﻻ يوجد ملخص باللغة العربية
The region around neutron number N = 60 in the neutron-rich Sr and Zr nuclei is one of the most dramatic examples of a ground state shape transition from (near) spherical below N = 60 to strongly deformed shapes in the heavier isotopes. The single-particle structure of 95-97Sr approaching the ground state shape transition at 98 Sr has been investigated via single-neutron transfer reactions using the (d, p) reaction in inverse kinematics. These reactions selectively populate states with a large overlap of the projectile ground state coupled to a neutron in a single-particle orbital. Radioactive 94,95,96Sr nuclei with energies of 5.5 AMeV were used to bombard a CD 2 target. Recoiling light charged particles and {gamma} rays were detected using a quasi-4{pi} silicon strip detector array and a 12 element Ge array. The excitation energy of states populated was reconstructed employing the missing mass method combined with {gamma}-ray tagging and differential cross sections for final states were extracted. A reaction model analysis of the angular distributions allowed for firm spin assignments to be made for the low-lying 352, 556 and 681 keV excited states in 95Sr and a constraint has been placed on the spin of the higher-lying 1666 keV state. Angular distributions have been extracted for 10 states populated in the d(95Sr,p)96Sr reaction, and constraints have been provided for the spins and parities of several final states. Results are compared to shell model calculations in several model spaces and the structure of low-lying states in 94Sr and 95Sr is well-described. The spectroscopic strength of the 0+ and 2 states in 96Sr is significantly more fragmented than predicted.
Background: Neutron-rich nuclei around neutron number N = 60 show a dramatic shape transition from spherical ground states to prolate deformation in 98Sr and heavier nuclei. Purpose: The purpose of this study is to investigate the single-particle str
We report on the mass measurements of several neutron-rich $mathrm{Rb}$ and $mathrm{Sr}$ isotopes in the $A approx 100$ region with the TITAN Penning-trap mass spectrometer. Using highly charged ions in the charge state $q=10+$, the masses of $^{98,9
An overall reduction factor (ORF) is introduced for studying the quenching of single particle strengths through nucleon transfer reactions. The ORF includes contributions of all the probed bound states of the residual nucleus in a transfer reaction a
The structure of $^{19,20,22}$C has been investigated using high-energy (about 240 MeV/nucleon) one- and two-neutron removal reactions on a carbon target. Measurements were made of the inclusive cross sections and momentum distributions for the charg
The rapid nuetron-capture process (r process) produces roughly half of the elements heavier than iron. The path and abundances produced are uncertain, however, because of the lack of nuclear strucure information on important neutron-rich nuclei. We a