ترغب بنشر مسار تعليمي؟ اضغط هنا

One- and two-neutron removal reactions from the most neutron-rich carbon isotopes

305   0   0.0 ( 0 )
 نشر من قبل Nobuyuki Kobayashi
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The structure of $^{19,20,22}$C has been investigated using high-energy (about 240 MeV/nucleon) one- and two-neutron removal reactions on a carbon target. Measurements were made of the inclusive cross sections and momentum distributions for the charged residues. Narrow momentum distributions were observed for one-neutron removal from $^{19}$C and $^{20}$C and two-neutron removal from $^{22}$C. Two-neutron removal from $^{20}$C resulted in a relatively broad momentum distribution. The results are compared with eikonal-model calculations combined with shell-model structure information. The neutron-removal cross sections and associated momentum distributions are calculated for transitions to both the particle-bound and particle-unbound final states. The calculations take into account the population of the mass $A-1$ reaction residues, $^{A-1}$C, and, following one-neutron emission after one-neutron removal, the mass $A-2$ two-neutron removal residues, $^{A-2}$C. The smaller contributions of direct two-neutron removal, that populate the $^{A-2}$C residues in a single step, are also computed. The data and calculations are shown to be in good overall agreement and consistent with the predicted shell-model ground state configurations and the one-neutron overlaps with low-lying states in $^{18-21}$C. These suggest significant $ u{s}_{1/2}^2$ valence neutron configurations in both $^{20}$C and $^{22}$C. The results for $^{22}$C strongly support the picture of $^{22}$C as a two-neutron halo nucleus with a dominant $ u{s}_{1/2}^2$ ground state configuration.



قيم البحث

اقرأ أيضاً

A systematic study of high energy, one-neutron removal reactions on 23 neutron-rich, psd--shell nuclei (Z=5-9, A=12-25) has been carried out. The longitudinal momentum distributions of the core fragments and corresponding single-neutron removal cross sections are reported for reactions on a carbon target. Extended Glauber model calculations, weighted by the spectroscopic factors obtained from shell model calculations, are compared to the experimental results. Conclusions are drawn regarding the use of such reactions as a spectroscopic tool and spin-parity assignments are proposed for 15B, 17C, 19-21N, 21,23O, 23-25F. The nature of the weakly bound systems 14B and 15,17C is discussed.
77 - D.T. Tran , H.J. Ong , G. Hagen 2017
The nuclear shell structure, which originates in the nearly independent motion of nucleons in an average potential, provides an important guide for our understanding of nuclear structure and the underlying nuclear forces. Its most remarkable fingerpr int is the existence of the so-called `magic numbers of protons and neutrons associated with extra stability. Although the introduction of a phenomenological spin-orbit (SO) coupling force in 1949 helped explain the nuclear magic numbers, its origins are still open questions. Here, we present experimental evidence for the smallest SO-originated magic number (subshell closure) at the proton number 6 in 13-20C obtained from systematic analysis of point-proton distribution radii, electromagnetic transition rates and atomic masses of light nuclei. Performing ab initio calculations on 14,15C, we show that the observed proton distribution radii and subshell closure can be explained by the state-of-the-art nuclear theory with chiral nucleon-nucleon and three-nucleon forces, which are rooted in the quantum chromodynamics.
105 - Cenxi Yuan , Chong Qi , Furong Xu 2012
Full shell-model diagonalization has been performed to study the structure of neutron-rich nuclei around $^{20}$C. We investigate in detail the roles played by the different monopole components of the effective interaction in the evolution of the N=1 4 shell in C, N and O isotopes. It is found that the relevant neutron-neutron monopole terms, $V^{nn}_{d_{5/2}d_{5/2}}$ and $V^{nn}_{s_{1/2}s_{1/2}}$, contribute significantly to the reduction of the N=14 shell gap in C and N isotopes in comparison with that in O isotopes. The origin of this unexpectedly large effect, which is comparable with (sometimes even larger than) that caused by the proton-neutron interaction, is related to the enhanced configuration mixing in those nuclei due to many-body correlations. Such a scheme is also supported by the large B(E2) value in the nucleus $^{20}$C which has been measured recently.
The eikonal reaction theory (ERT) proposed lately is a method of calculating one-neutron removal reactions at intermediate incident energies in which Coulomb breakup is treated accurately with the continuum discretized coupled-channels method. ERT is extended to two-neutron removal reactions. ERT reproduces measured one- and two-neutron removal cross sections for 6He scattering on 12C and 208Pb targets at 240 MeV/nucleon and also on a 28Si target at 52 MeV/nucleon. For the heavier target in which Coulomb breakup is important, ERT yields much better agreement with the measured cross sections than the Glauber model.
Low-lying excited states of the neutron-rich calcium isotopes $^{48-52}$Ca have been studied via $gamma$-ray spectroscopy following inverse-kinematics proton scattering on a liquid hydrogen target using the GRETINA $gamma$-ray tracking array. The ene rgies and strengths of the octupole states in these isotopes are remarkably constant, indicating that these states are dominated by proton excitations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا