ﻻ يوجد ملخص باللغة العربية
One of the Holy Grails of observational astronomy is to confirm the prediction that black holes in the Universe are described by the Kerr solution of Einsteins field equations of general relativity. This Topical Collection provides a status report of theoretical and experimental progress towards confirming the Kerr paradigm through X-ray astronomy, gravitational lensing, stellar tidal disruption events, superradiance, and gravitational-wave observations of black hole binary mergers.
We propose a novel method to test the consistency of the multipole moments of compact binary systems with the predictions of General Relativity (GR). The multipole moments of a compact binary system, known in terms of symmetric and trace-free tensors
The emergent area of gravitational wave astronomy promises to provide revolutionary discoveries in the areas of astrophysics, cosmology, and fundamental physics. One of the most exciting possibilities is to use gravitational-wave observations to test
In an earlier work [S. Kastha et al., PRD {bf 98}, 124033 (2018)], we developed the {it parametrized multipolar gravitational wave phasing formula} to test general relativity, for the non-spinning compact binaries in quasi-circular orbit. In this pap
LIGO and Virgo have recently observed a number of gravitational wave (GW) signals that are fully consistent with being emitted by binary black holes described by general relativity. However, there are theoretical proposals of exotic objects that can
Binary black hole may form near a supermassive black hole. The background black hole (BH) will affect the gravitational wave (GW) generated by the binary black hole. It is well known that the Penrose process may provide extra energy due to the ergosp