ﻻ يوجد ملخص باللغة العربية
We study the quantum dynamics of a simple translation invariant, center-of-mass (CoM) preserving model of interacting fermions in one dimension (1D), which arises in multiple experimentally realizable contexts. We show that this model naturally displays the phenomenology associated with fractonic systems, wherein single charges can only move by emitting dipoles. This allows us to demonstrate the rich Krylov fractured structure of this model, whose Hilbert space shatters into exponentially many dynamically disconnected subspaces. Focusing on exponentially large Krylov subspaces, we show that these can be either be integrable or non-integrable, thereby establishing the notion of Krylov-restricted thermalization. We analytically find a tower of integrable Krylov subspaces of this Hamiltonian, all of which map onto spin-1/2 XX models of various system sizes. We also discuss the physics of the non-integrable subspaces, where we show evidence for weak Eigenstate Thermalization Hypothesis (ETH) restricted to each non-integrable Krylov subspace. Further, we show that constraints in some of the thermal Krylov subspaces cause the long-time expectation values of local operators to deviate from behavior typically expected from translation-invariant systems. Finally, we show using a Schrieffer-Wolff transformation that such models naturally appear as effective Hamiltonians in the large electric field limit of the interacting Wannier-Stark problem, and comment on connections of our work with the phenomenon of Bloch many-body localization.
A quantum many-body scar system usually contains a special non-thermal subspace (approximately) decoupled from the rest of the Hilbert space. In this work, we propose a general structure called deformed symmetric spaces for the decoupled subspaces ho
Integrable Floquet spin chains are known to host strong zero and $pi$ modes which are boundary operators that respectively commute and anticommute with the Floquet unitary generating stroboscopic time-evolution, in addition to anticommuting with a di
There is a dichotomy in the nonequilibrium dynamics of quantum many body systems. In the presence of integrability, expectation values of local operators equilibrate to values described by a generalized Gibbs ensemble, which retains extensive memory
We study the complex quantum dynamics of a system of many interacting atoms in an elongated anharmonic trap. The system is initially in a Bose-Einstein condensed state, well described by Thomas-Fermi profile in the elongated direction and the ground
Antiferromagnets and ferromagnets are archetypes of the two distinct (type-A and type-B) ways of spontaneously breaking a continuous symmetry. Although type-B Nambu--Goldstone modes arise in various systems, the ferromagnet was considered pathologica