ﻻ يوجد ملخص باللغة العربية
A non-resonant streaming instability driven by cosmic-ray currents, also called Bells instability, is proposed as a candidate for providing the required magnetic turbulence of efficient diffusive shock accelerations. To demonstrate the saturation level and mechanism of the non-resonant streaming instability in a laboratory environment, we attempt to develop an experiment at the Photo Injector Test Facility at DESY, Zeuthen site (PITZ). As an electron beam is used to replace the proton beam to carry the cosmic-ray current in our experiment, the polarization of the non-resonant streaming instability will be modified from the left-handed (LH) mode to the right-handed (RH) mode. The theoretical instability analysis shows that the growth rate of this RH non-resonant mode may be smaller than it of the LH resonant mode. However the LH resonant mode can be ignored in our experiment while the expected wavelength is longer than the used plasma cell. The results of PIC simulations will also support this contention and the occurrence of non-resonant streaming instability in our experiment.
The gas breakdown produced by high-power pulsed linearly and circularly polarized microwave fields which are much weaker than the atomic fields is investigated in the non-relativistic limit. Obtained the electron distribution function produced by the
The breaking of parity, a fundamental symmetry between left and right is best understood in the framework of left-right symmetric extension of the standard model. We show that the production of a heavy right-handed neutrino at the proposed Large Hadr
The recent diphoton excess signal at an invariant mass of 750 GeV can be interpreted in the framework of left-right symmetric models with additional scalar singlets and vector-like fermions. We propose a minimal scenario for such a purpose. Extending
In plasmas where the thermal energy density exceeds the magnetic energy density ($beta_parallel > 1$), the aperiodic ordinary mode (O-mode) instability is driven by an excess of parallel temperature $A = T_perp /T_parallel < 1$ (where $parallel$ and
We give a simple argument for the exclusive existence of mirror and electromaghetic ion cyclotron modes in anisotropic high-$beta$ plasmas. It is shown that, in addition to a large domain of coexistence of both modes, two domains exist in parameter s