ﻻ يوجد ملخص باللغة العربية
We measure the magneto-conductance through a micron-sized quantum dot hosting about 500 electrons in the quantum Hall regime. In the Coulomb blockade, when the island is weakly coupled to source and drain contacts, edge reconstruction at filling factors between one and two in the dot leads to the formation of two compressible regions tunnel coupled via an incompressible region of filling factor $ u=1$. We interpret the resulting conductance pattern in terms of a phase diagram of stable charge in the two compressible regions. Increasing the coupling of the dot to source and drain, we realize a Fabry-P{e}rot quantum Hall interferometer, which shows an interference pattern strikingly similar to the phase diagram in the Coulomb blockade regime. We interpret this experimental finding using an empirical model adapted from the Coulomb blockaded to the interferometer case. The model allows us to relate the observed abrupt jumps of the Fabry-P{e}rot interferometer phase to a change in the number of bulk quasiparticles. This opens up an avenue for the investigation of phase shifts due to (fractional) charge redistributions in future experiments on similar devices.
As the energy relaxation time of superconducting qubits steadily improves, non-equilibrium quasiparticle excitations above the superconducting gap emerge as an increasingly relevant limit for qubit coherence. We measure fluctuations in the number of
When electrons are confined in two-dimensional (2D) materials, quantum mechanically enhanced transport phenomena, as exemplified by the quantum Hall effects (QHE), can be observed. Graphene, an isolated single atomic layer of graphite, is an ideal re
The dephasing rate of an electron level in a quantum dot, placed next to a fluctuating edge current in the fractional quantum Hall effect, is considered. Using perturbation theory, we first show that this rate has an anomalous dependence on the bias
We report measurements of the interaction-induced quantum Hall effect in a spin-polarized AlAs two-dimensional electron system where the electrons occupy two in-plane conduction band valleys. Via the application of in-plane strain, we tune the energi
In the Quantum Hall regime, near integer filling factors, electrons should only be transmitted through spatially-separated edge states. However, in mesoscopic systems, electronic transmission turns out to be more complex, giving rise to a large spect