ﻻ يوجد ملخص باللغة العربية
We find that the recently-proposed ghost-free interaction of a 2-form gauge field in four dimensions, which contains derivative couplings in a nonperturbative manner, can be regarded as a resummation of ghostly interaction terms. We investigate the higher derivative structure of this model in a minisuperspace description and demonstrate that the higher derivative terms can be removed by taking appropriate combinations of the Euler-Lagrange equations, while a truncation at a finite order spoils this structure. We also show that this nature is peculiar to four dimensions.
In this paper the dynamics of free gauge fields in Bianchi type I-VII$_{h}$ space-times is investigated. The general equations for a matter sector consisting of a $p$-form field strength ($p,in,{1,3}$), a cosmological constant ($4$-form) and perfect
We study gauge (in)dependence of the gravitational waves (GWs) induced from curvature perturbations. For the GWs produced in a radiation-dominated era, we find that the observable (late-time) GWs in the TT gauge and in the Newtonian gauge are the sam
We consider modifications of general relativity characterized by a special noncovariant constraint on metric coefficients, which effectively generates a perfect-fluid type of matter stress tensor in Einstein equations. Such class of modified gravity
We show that the ghost degrees of freedom of Einstein gravity with a Weyl term can be eliminated by a simple mechanism that invokes local Lorentz symmetry breaking. We demonstrate how the mechanism works in a cosmological setting. The presence of the
Using our recent proposal for defining gauge invariant averages we give a general-covariant formulation of the so-called cosmological backreaction. Our effective covariant equations allow us to describe in explicitly gauge invariant form the way clas