ﻻ يوجد ملخص باللغة العربية
We consider the verification of multiple expected reward objectives at once on Markov decision processes (MDPs). This enables a trade-off analysis among multiple objectives by obtaining the Pareto front. We focus on strategies that are easy to employ and implement. That is, strategies that are pure (no randomization) and have bounded memory. We show that checking whether a point is achievable by a pure stationary strategy is NP-complete, even for two objectives, and we provide an MILP encoding to solve the corresponding problem. The bounded memory case can be reduced to the stationary one by a product construction. Experimental results using Storm and Gurobi show the feasibility of our algorithms.
We propose a new global SPACING constraint that is useful in modeling events that are distributed over time, like learning units scheduled over a study program or repeated patterns in music compositions. First, we investigate theoretical properties o
Recently, we have struck the balance between the information freshness, in terms of age of information (AoI), experienced by users and energy consumed by sensors, by appropriately activating sensors to update their current status in caching enabled I
This paper provides several optimizations of the rank-based approach for complementing B{u}chi automata. We start with Schewes theoretically optimal construction and develop a set of techniques for pruning its state space that are key to obtaining sm
Meta learning with multiple objectives can be formulated as a Multi-Objective Bi-Level optimization Problem (MOBLP) where the upper-level subproblem is to solve several possible conflicting targets for the meta learner. However, existing studies eith
Since the first conference held in Marseille in 1982, ICLP has been the premier international event for presenting research in logic programming. Contributions are sought in all areas of logic programming, including but not restricted to: Foundatio