ترغب بنشر مسار تعليمي؟ اضغط هنا

One Dimensional Localization for Arbitrary Disorder Correlations

57   0   0.0 ( 0 )
 نشر من قبل Michael Hilke
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We evaluate the localization length of the wave solution of a random potential characterized by an arbitrary autocorrelation function. We go beyond the Born approximation to evaluate the localization length using a non-linear approximation and calculate all the correlators needed for the localization length expression. We compare our results with numerical results for the special case, where the autocorrelation decays quadratically with distance. We look at disorder ranging from weak to strong disorder, which shows excellent agreement. For the numerical simulation, we introduce a generic method to obtain a random potential with an arbitrary autocorrelation function. The correlated potential is obtained in terms of the convolution between a Wiener stochastic potential and a function of the correlation.



قيم البحث

اقرأ أيضاً

193 - Artur Maksymov , Piotr Sierant , 2020
The many-body localization transition for Heisenberg spin chain with a speckle disorder is studied. Such a model is equivalent to a system of spinless fermions in an optical lattice with an additional speckle field. Our numerical results show that th e many-body localization transition in speckle disorder falls within the same universality class as the transition in an uncorrelated random disorder, in contrast to the quasiperiodic potential typically studied in experiments. This hints at possibilities of experimental studies of the role of rare Griffiths regions and of the interplay of ergodic and localized grains at the many-body localization transition. Moreover, the speckle potential allows one to study the role of correlations in disorder on the transition. We study both spectral and dynamical properties of the system focusing on observables that are sensitive to the disorder type and its correlations. In particular, distributions of local imbalance at long times provide an experimentally available tool that reveals the presence of small ergodic grains even deep in the many-body localized phase in a correlated speckle disorder.
170 - Marie Piraud 2012
We study Anderson localization of single particles in continuous, correlated, one-dimensional disordered potentials. We show that tailored correlations can completely change the energy-dependence of the localization length. By considering two suitabl e models of disorder, we explicitly show that disorder correlations can lead to a nonmonotonic behavior of the localization length versus energy. Numerical calculations performed within the transfer-matrix approach and analytical calculations performed within the phase formalism up to order three show excellent agreement and demonstrate the effect. We finally show how the nonmonotonic behavior of the localization length with energy can be observed using expanding ultracold-atom gases.
We investigate the spectral function of Bloch states in an one-dimensional tight-binding non-interacting chain with two different models of static correlated disorder, at zero temperature. We report numerical calculations of the single-particle spect ral function based on the Kernel Polynomial Method, which has an $mathcal{O}(N)$ computational complexity. These results are then confirmed by analytical calculations, where precise conditions were obtained for the appearance of a classical limit in a single-band lattice system. Spatial correlations in the disordered potential give rise to non-perturbative spectral functions shaped as the probability distribution of the random on-site energies, even at low disorder strengths. In the case of disordered potentials with an algebraic power-spectrum, $proptoleft|kright|^{-alpha}$, we show that the spectral function is not self-averaging for $alphageq1$.
We evaluate the localization length of the wave (or Schroedinger) equation in the presence of a disordered speckle potential. This is relevant for experiments on cold atoms in optical speckle potentials. We focus on the limit of large disorder, where the Born approximation breaks down and derive an expression valid in the quasi-metallic phase at large disorder. This phase becomes strongly localized and the effective mobility edge disappears.
A microwave setup for mode-resolved transport measurement in quasi-one-dimensional (quasi-1D) structures is presented. We will demonstrate a technique for direct measurement of the Greens function of the system. With its help we will investigate quas i-1D structures with various types of disorder. We will focus on stratified structures, i.e., structures that are homogeneous perpendicular to the direction of wave propagation. In this case the interaction between different channels is absent, so wave propagation occurs individually in each open channel. We will apply analytical results developed in the theory of one-dimensional (1D) disordered models in order to explain main features of the quasi-1D transport. The main focus will be selective transport due to long-range correlations in the disorder. In our setup, we can intentionally introduce correlations by changing the positions of periodically spaced brass bars of finite thickness. Because of the equivalence of the stationary Schrodinger equation and the Helmholtz equation, the result can be directly applied to selective electron transport in nanowires, nanostripes, and superlattices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا