ترغب بنشر مسار تعليمي؟ اضغط هنا

Microwave realization of quasi one-dimensional systems with correlated disorder

167   0   0.0 ( 0 )
 نشر من قبل Ulrich Kuhl
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A microwave setup for mode-resolved transport measurement in quasi-one-dimensional (quasi-1D) structures is presented. We will demonstrate a technique for direct measurement of the Greens function of the system. With its help we will investigate quasi-1D structures with various types of disorder. We will focus on stratified structures, i.e., structures that are homogeneous perpendicular to the direction of wave propagation. In this case the interaction between different channels is absent, so wave propagation occurs individually in each open channel. We will apply analytical results developed in the theory of one-dimensional (1D) disordered models in order to explain main features of the quasi-1D transport. The main focus will be selective transport due to long-range correlations in the disorder. In our setup, we can intentionally introduce correlations by changing the positions of periodically spaced brass bars of finite thickness. Because of the equivalence of the stationary Schrodinger equation and the Helmholtz equation, the result can be directly applied to selective electron transport in nanowires, nanostripes, and superlattices.



قيم البحث

اقرأ أيضاً

We investigate the spectral function of Bloch states in an one-dimensional tight-binding non-interacting chain with two different models of static correlated disorder, at zero temperature. We report numerical calculations of the single-particle spect ral function based on the Kernel Polynomial Method, which has an $mathcal{O}(N)$ computational complexity. These results are then confirmed by analytical calculations, where precise conditions were obtained for the appearance of a classical limit in a single-band lattice system. Spatial correlations in the disordered potential give rise to non-perturbative spectral functions shaped as the probability distribution of the random on-site energies, even at low disorder strengths. In the case of disordered potentials with an algebraic power-spectrum, $proptoleft|kright|^{-alpha}$, we show that the spectral function is not self-averaging for $alphageq1$.
We study the dynamics of an electron subjected to a uniform electric field within a tight-binding model with long-range-correlated diagonal disorder. The random distribution of site energies is assumed to have a power spectrum $S(k) sim 1/k^{alpha}$ with $alpha > 0$. Moura and Lyra [Phys. Rev. Lett. {bf 81}, 3735 (1998)] predicted that this model supports a phase of delocalized states at the band center, separated from localized states by two mobility edges, provided $alpha > 2$. We find clear signatures of Bloch-like oscillations of an initial Gaussian wave packet between the two mobility edges and determine the bandwidth of extended states, in perfect agreement with the zero-field prediction.
201 - A.V. Plyukhin 2005
In the conventional theory of hopping transport the positions of localized electronic states are assumed to be fixed, and thermal fluctuations of atoms enter the theory only through the notion of phonons. On the other hand, in 1D and 2D lattices, whe re fluctuations prevent formation of long-range order, the motion of atoms has the character of the large scale diffusion. In this case the picture of static localized sites may be inadequate. We argue that for a certain range of parameters, hopping of charge carriers among localization sites in a network of 1D chains is a much slower process than diffusion of the sites themselves. Then the carriers move through the network transported along the chains by mobile localization sites jumping occasionally between the chains. This mechanism may result in temperature independent mobility and frequency dependence similar to that for conventional hopping.
We investigate a $d$-dimensional model ($d$ = 2,3) for sound waves in a disordered environment, in which the local fluctuations of the elastic modulus are spatially correlated with a certain correlation length. The model is solved analytically by mea ns of a field-theoretical effective-medium theory (self-consistent Born approximation) and numerically on a square lattice. As in the uncorrelated case the theory predicts an enhancement of the density of states over Debyes $omega^{d-1}$ law (``boson peak) as a result of disorder. This anomay becomes reinforced for increasing correlation length $xi$. The theory predicts that $xi$ times the width of the Brillouin line should be a universal function of $xi$ times the wavenumber. Such a scaling is found in the 2d simulation data, so that they can be represented in a universal plot. In the low-wavenumber regime, where the lattice structure is irrelevant there is excellent agreement between the simulation at small disorder. At larger disorder the continuum theory deviates from the lattice simulation data. It is argued that this is due to an instability of the model with stronger disorder.
207 - I.Grosu , L.Tugulan 2008
We calculate the plasmon dispersion in quasi-one-dimensional quantum wires, in the presence of non-magnetic impurities, taking into consideration the memory function formalism and the role of the forward scattering. The plasma frequency is reduced by the presence of impurities. We also calculate, analytically, the plasmon dispersion in the Born approximation, for the scattering of the electrons by the non-magnetic impurities. We compare our result with the numerical results of Sarma and Hwang.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا