ﻻ يوجد ملخص باللغة العربية
ZrSiS has been identified as a topological material made from non-toxic and earth-abundant elements. Together with its extremely large and uniquely angle-dependent magnetoresistance this makes it an interesting material for applications. We study the origin of the so-called butterfly magnetoresistance by performing magnetotransport measurements on four different devices made from exfoliated crystalline flakes. We identify near-perfect electron-hole compensation, tuned by the Zeeman effect, as the source of the butterfly magnetoresistance. Furthermore, the observed Shubnikov-de Haas oscillations are carefully analyzed using the Lifshitz-Kosevich equation to determine their Berry phase and thus their topological properties. Although the link between the butterfly magnetoresistance and the Berry phase remains uncertain, the topological nature of ZrSiS is confirmed.
We report a study on the magnetotransport properties and on the Fermi surfaces (FS) of the ZrSi(Se,Te) semimetals. Density Functional Theory (DFT) calculations, in absence of spin orbit coupling (SOC), reveal that both the Se and the Te compounds dis
Spintronic devices using antiferromagnets (AFMs) are promising candidates for future applications. Recently, many interesting physical properties have been reported with AFM-based devices. Here we report a butterfly-shaped magnetoresistance (MR) in a
We investigate theoretically the spectrum of a graphene-like sample (honeycomb lattice) subjected to a perpendicular magnetic field and irradiated by circularly polarized light. This system is studied using the Floquet formalism, and the resulting Ho
We instigate the angle-dependent magnetoresistance (AMR) of the layered nodal-line Dirac semimetal ZrSiS for the in-plane and out-of-plane current directions. This material has recently revealed an intriguing butterfly-shaped in-plane AMR that is not
We present a far-infrared magneto-optical study of the gapped nodal-line semimetal ZrSiS in magnetic fields $B$ up to 7 T. The observed field-dependent features, which represent intra- (cyclotron resonance) and interband transitions, develop as $sqrt