ﻻ يوجد ملخص باللغة العربية
We present a far-infrared magneto-optical study of the gapped nodal-line semimetal ZrSiS in magnetic fields $B$ up to 7 T. The observed field-dependent features, which represent intra- (cyclotron resonance) and interband transitions, develop as $sqrt{B}$ in increasing field and can be consistently explained within a simple 2D Dirac band model with a gap of 26 meV and an averaged Fermi velocity of $3times10^{5}$ m/s. This indicates a rather narrow distribution of these parameters along the in-plane portions of the nodal line in the Brillouin zone. A field-induced feature with an energy position that does not depend on $B$ is also detected in the spectra. Possible origins of this feature are discussed.
We demonstrate theoretically that the interaction of electrons in gapped Dirac materials (gapped graphene and transition-metal dichalchogenide monolayers) with a strong off-resonant electromagnetic field (dressing field) substantially renormalizes th
$require{mediawiki-texvc}$ A theoretical study is presented on the in-plane conductance of graphene that is partially sandwiched by Ni(111) slabs with a finite size and atom-scale width of $approx12.08 AA$. In the sandwiched part, the gapped Dirac co
We study edge-states in graphene systems where a bulk energy gap is opened by inversion symmetry breaking. We find that the edge-bands dispersion can be controlled by potentials applied on the boundary with unit cell length scale. Under certain bound
The topological properties of fermions arise from their low-energy Dirac-like band dispersion and associated chiralities. Initially confined to points, extensions of the Dirac dispersion to lines and even loops have now been uncovered and semimetals
We report on optical reflectivity experiments performed on Cd3As2 over a broad range of photon energies and magnetic fields. The observed response clearly indicates the presence of 3D massless charge carriers. The specific cyclotron resonance absorpt