ﻻ يوجد ملخص باللغة العربية
We explore a counterfactual protocol for energy transfer. A modified version of a Mach-Zehnder interferometer dissociates a photons position and energy into separate channels, resulting in a photoelectric effect in one channel without the absorption of a photon. We use the quantum Zeno effect to extend our results by recycling the same photon through the system and obtain a stream of photoelectrons. If dissociation of properties such as energy can be demonstrated experimentally, there may be a variety of novel energy-related applications that may arise from the capacity to do non-local work. The dissociation of intrinsic properties, like energy, from elementary particles may also lead to theoretical discussions of the constitution of quantum objects.
When an atom or molecule absorbs a high-energy photon, an electron is emitted with a well-defined energy and a highly-symmetric angular distribution, ruled by energy quantization and parity conservation. These rules seemingly break down when small qu
The possibility of interaction-free measurements and counterfactual computations is a striking feature of quantum mechanics pointed out around 20 years ago. We implement such phenomena in actual 5-qubit, 15-qubit and 20-qubit IBM quantum computers by
We discuss the quantization of sound waves in a fluid with a linear dispersion relation and calculate the quantum density fluctuations of the fluid in several cases. These include a fluid in its ground state. In this case, we discuss the scattering c
We present how basic logic gates including NAND, NOR and XOR gates can be implemented counterfactually. The two inputs (Bob and Charlie) and the output (Alice) of the proposed counterfactual logic gate are not within the same station but rather separ
Mitchison and Jozsa recently suggested that the chained-Zeno counterfactual computation protocol recently proposed by Hosten et al. is counterfactual for only one output of the computer. This claim was based on the existing abstract algebraic definit