ﻻ يوجد ملخص باللغة العربية
We present how basic logic gates including NAND, NOR and XOR gates can be implemented counterfactually. The two inputs (Bob and Charlie) and the output (Alice) of the proposed counterfactual logic gate are not within the same station but rather separated in three different locations. We show that there is no need to pre-arrange entanglement for the gate, and more importantly, there is no real physical particles traveling among Alice, Bob and Charlie during the information processing. Bob and Charlie only need to independently control the blocking and unblocking of the transmission channels that connect them to Alice. In this way, they can completely determine the state of a real photon at Alices end, thereby leading to implement a counterfactual logic gate. The functionality of a particular counterfactual logic gate is determined only by an appropriate design of Alices optical device. Furthermore, by utilizing the proposed counterfactual logic gates, we demonstrate how to counterfactually prepare the Greenberger-Horne-Zeilinger state and W state with three remote quantum objects, which are in superposition states of blocking and unblocking the transmission channel.
We show that a set of optical memories can act as a configurable linear optical network operating on frequency-multiplexed optical states. Our protocol is applicable to any quantum memories that employ off-resonant Raman transitions to store optical
Control over physical systems at the quantum level is a goal shared by scientists in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can
We introduce the method of using an annealing genetic algorithm to the numerically complex problem of looking for quantum logic gates which simultaneously have highest fidelity and highest success probability. We first use the linear optical quantum
We characterize the energetic footprint of a two-qubit quantum gate from the perspective of non-equilibrium quantum thermodynamics. We experimentally reconstruct the statistics of energy and entropy fluctuations following the implementation of a cont
Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multi-qubit quantum gates for trapped-ion quantum information processing (QIP). With fields generated by currents in microfabricated surfac