ﻻ يوجد ملخص باللغة العربية
We examine the atomistic scale dependence of materials resistance-to-failure by numerical simulations and analytical analysis in electrical analogs of brittle crystals. We show that fracture toughness depends on the lattice geometry in a way incompatible with Griffiths relationship between fracture and free surface energy. Its value finds its origin in the matching between the continuum displacement field at the engineering scale, and the discrete nature of solids at the atomic scale. The generic asymptotic form taken by this field near the crack tip provides a solution for this matching, and subsequently a way to predict toughness from the atomistic parameters with application to graphene.
The effect of substrate was studied using nanoindentation on thin films. Soft films on hard substrate showed more pile up than usual which was attributed to the dislocation pile up at the film substrate interface. The effect of tip blunting on the lo
High-strain-rate shear tests were conducted on a three-layered bonded test piece comprising a central aluminum layer with PMMA resin layers bonded on both sides. Upon calculating the displacement field and the strain field using digital image correla
As the energy problem becomes more prominent, researches on thermoelectric (TE) materials have deepened over the past few decades. Low thermal conductivity enables thermoelectric materials better thermal conversion performance. In this study, based o
By suitably adapting a recent approach [A. Laio and M. Parrinello, PNAS, 99, 12562 (2002)] we develop a powerful molecular dynamics method for the study of pressure-induced structural transformations. We use the edges of the simulation cell as collec
Synchrotron Laue microdiffraction and Digital Image Correlation measurements were coupled to track the elastic strain field (or stress field) and the total strain field near a general grain boundary in a bent bicrystal. A 316L stainless steel bicryst