ﻻ يوجد ملخص باللغة العربية
We develop a Nonparametric Empirical Bayes (NEB) framework for compound estimation in the discrete linear exponential family, which includes a wide class of discrete distributions frequently arising from modern big data applications. We propose to directly estimate the Bayes shrinkage factor in the generalized Robbins formula via solving a scalable convex program, which is carefully developed based on a RKHS representation of the Steins discrepancy measure. The new NEB estimation framework is flexible for incorporating various structural constraints into the data driven rule, and provides a unified approach to compound estimation with both regular and scaled squared error losses. We develop theory to show that the class of NEB estimators enjoys strong asymptotic properties. Comprehensive simulation studies as well as analyses of real data examples are carried out to demonstrate the superiority of the NEB estimator over competing methods.
Fields like public health, public policy, and social science often want to quantify the degree of dependence between variables whose relationships take on unknown functional forms. Typically, in fact, researchers in these fields are attempting to eva
The test of homogeneity for normal mixtures has been conducted in diverse research areas, but constructing a theory of the test of homogeneity is challenging because the parameter set for the null hypothesis corresponds to singular points in the para
Bayes classifiers for functional data pose a challenge. This is because probability density functions do not exist for functional data. As a consequence, the classical Bayes classifier using density quotients needs to be modified. We propose to use d
In science, the most widespread statistical quantities are perhaps $p$-values. A typical advice is to reject the null hypothesis $H_0$ if the corresponding p-value is sufficiently small (usually smaller than 0.05). Many criticisms regarding p-values
Large-scale modern data often involves estimation and testing for high-dimensional unknown parameters. It is desirable to identify the sparse signals, ``the needles in the haystack, with accuracy and false discovery control. However, the unprecedente