ﻻ يوجد ملخص باللغة العربية
Cosmic voids, the underdense regions in the universe, are particularly sensitive to diffuse density components such as cosmic neutrinos. This sensitivity is enhanced by the match between void sizes and the free-streaming scale of massive neutrinos. Using the massive neutrino simulations texttt{MassiveNuS}, we investigate the effect of neutrino mass on dark matter halos as a function of environment. We find that the halo mass function depends strongly on neutrino mass and that this dependence is more pronounced in voids than in high-density environments. An observational program that measured the characteristic mass of the most massive halos in voids should be able to place novel constraints on the sum of the masses of neutrinos $sum m_ u$. The neutrino mass effect in the simulations is quite strong: In a 512$^3$ $h^{-3}$ Mpc$^3$ survey, the mean mass of the 1000 most massive halos in the void interiors is $(4.82 pm 0.11) times 10^{12} h^{-1}M_{odot}$ for $sum m_ u = 0.6$ eV and $(8.21 pm 0.13) times 10^{12} h^{-1}M_{odot}$ for $sum m_ u = 0.1$ eV. Subaru (SuMIRe), Euclid and WFIRST will have both spectroscopic and weak lensing surveys. Covering volumes at least 50 times larger than our simulations, they should be sensitive probes of neutrino mass through void substructure.
We forecast the sensitivity of thirty-five different combinations of future Cosmic Microwave Background and Large Scale Structure data sets to cosmological parameters and to the total neutrino mass. We work under conservative assumptions accounting f
We compute the dark matter halo mass function using the excursion set formalism for a diffusive barrier with linearly drifting average which captures the main features of the ellipsoidal collapse model. We evaluate the non-Markovian corrections due t
In this paper we investigate how the halo mass function evolves with redshift, based on a suite of very large (with N_p = 3072^3 - 6000^3 particles) cosmological N-body simulations. Our halo catalogue data spans a redshift range of z = 0-30, allowing
We present a new theory for the hierarchical clustering of dark matter (DM) halos based on stochastic differential equations, that constitutes a change of perspective with respect to existing frameworks (e.g., the excursion set approach); this work i
Using data from our Parkes & ATCA HI survey of six groups analogous to the Local Group, we find that the HI mass function and velocity distribution function for loose groups are the same as those for the Local Group. Both mass functions confirm that