ﻻ يوجد ملخص باللغة العربية
In this paper we investigate how the halo mass function evolves with redshift, based on a suite of very large (with N_p = 3072^3 - 6000^3 particles) cosmological N-body simulations. Our halo catalogue data spans a redshift range of z = 0-30, allowing us to probe the mass function from the dark ages to the present. We utilise both the Friends-of-Friends (FOF) and Spherical Overdensity (SO) halofinding methods to directly compare the mass function derived using these commonly used halo definitions. The mass function from SO haloes exhibits a clear evolution with redshift, especially during the recent era of dark energy dominance (z < 1). We provide a redshift-parameterised fit for the SO mass function valid for the entire redshift range to within ~20% as well as a scheme to calculate the mass function for haloes with arbitrary overdensities. The FOF mass function displays a weaker evolution with redshift. We provide a `universal fit for the FOF mass function, fitted to data across the entire redshift range simultaneously, and observe redshift evolution in our data versus this fit. The relative evolution of the mass functions derived via the two methods is compared and we find that the mass functions most closely match at z=0. The disparity at z=0 between the FOF and SO mass functions resides in their high mass tails where the collapsed fraction of mass in SO haloes is ~80% of that in FOF haloes. This difference grows with redshift so that, by z>20, the SO algorithm finds a ~50-80% lower collapsed fraction in high mass haloes than does the FOF algorithm, due in part to the significant over-linking effects known to affect the FOF method.
We use an array of high-resolution N-body simulations to determine the mass function of dark matter haloes at redshifts 10-30. We develop a new method for compensating for the effects of finite simulation volume that allows us to find an approximatio
Using data from our Parkes & ATCA HI survey of six groups analogous to the Local Group, we find that the HI mass function and velocity distribution function for loose groups are the same as those for the Local Group. Both mass functions confirm that
We analyze the evolution of cosmological perturbations in the cyclic model, paying particular attention to their behavior and interplay over multiple cycles. Our key results are: (1) galaxies and large scale structure present in one cycle are generat
Cosmic voids, the underdense regions in the universe, are particularly sensitive to diffuse density components such as cosmic neutrinos. This sensitivity is enhanced by the match between void sizes and the free-streaming scale of massive neutrinos. U
We compute the dark matter halo mass function using the excursion set formalism for a diffusive barrier with linearly drifting average which captures the main features of the ellipsoidal collapse model. We evaluate the non-Markovian corrections due t