ﻻ يوجد ملخص باللغة العربية
We present a self-calibrating, SI-traceable broadband Rydberg-atom-based radio-frequency (RF) electric field probe (the Rydberg Field Probe or RFP) and measurement instrument (Rydberg Field Measurement System or RFMS). The RFMS comprises an atomic RF field probe (RFP), connected by a ruggedized fiber-optic patch cord to a portable mainframe control unit with a software interface for RF measurement and analysis including real-time field readout and RF waveform visualization. The instrument employs electromagnetically induced transparency (EIT) readout of spectral signatures from RF-sensitive Rydberg states of an atomic vapor for continuous, pulsed, and modulated RF field measurement. The RFP exploits resonant and off-resonant Rydberg-field interactions to realize broadband RF measurements at frequencies ranging from ~10 MHz to sub-THz over a wide dynamic range. The RFMS incorporates an RF-field-free atomic reference and a laser-frequency tracker to ensure reliability and accuracy of the RF measurement. We characterize the RFP and measure polar field and polarization patterns of the RFP at 12.6 GHz RF in the far-field of a standard gain horn antenna. Measurements at 2.5 GHz are also performed. Measured patterns are in good agreement with simulations. A detailed calibration procedure and uncertainty analysis are presented that account for deviations from an isotropic response over a $4pi$ solid angle, arising from dielectric structures external to the atomic measurement volume. Contributions to the measurement uncertainty from the fundamental atomic measurement method and associated analysis as well as material, geometry, and hardware design choices are accounted for. A calibration (C) factor is used to establish absolute-standard SI-traceable calibration of the RFP. Pulsed and modulated RF field measurement, and time-domain RF-pulse waveform imaging are also demonstrated.
In this work, we demonstrate the use of a Rydberg atom-based sensor for determining the angle-of-arrival of an incident radio-frequency (RF) wave or signal. The technique uses electromagnetically induced transparency in Rydberg atomic vapor in conjun
We demonstrate the use of multiple atomic-level Rydberg-atom schemes for continuous frequency detection of radio frequency (RF) fields. Resonant detection of RF fields by electromagnetically-induced transparency and Autler-Townes (AT) in Rydberg atom
In this article we describe the basic principles of Rydberg atom-based RF sensing and present the development of atomic pulsed RF detection and RF phase sensing establishing capabilities pertinent to applications in communications and sensing. To dat
There is an increasing demand for precise molecular spectroscopy, in particular in the mid-infrared fingerprint window that hosts a considerable number of vibrational signatures, whether it be for modeling our atmosphere, interpreting astrophysical s
This work reports on the application of a novel electric field-ionization setup for high-resolution laser spectroscopy measurements on bunched fast atomic beams in a collinear geometry. In combination with multi-step resonant excitation to Rydberg st