ﻻ يوجد ملخص باللغة العربية
The challenge of mastering computational tasks of enormous size tends to frequently override questioning the quality of the numerical outcome in terms of accuracy. By this we do not mean the accuracy within the discrete setting, which itself may also be far from evident for ill-conditioned problems or when iterative solvers are involved. By accuracy-controlled computation we mean the deviation of the numerical approximation from the exact solution of an underlying continuous problem in a relevant metric, which has been the initiating interest in the first place. Can the accuracy of a numerical result be rigorously certified - a question that is particularly important in the context of uncertainty quantification, when many possible sources of uncertainties interact. This is the guiding question throughout this article, which reviews recent developments of low-rank approximation methods for problems in high spatial dimensions. In particular, we highlight the role of adaptivity when dealing with such strongly nonlinear methods that integrate in a natural way issues of discrete and continuous accuracy.
The existence and uniqueness of weak solutions to dynamical low-rank evolution problems for parabolic partial differential equations in two spatial dimensions is shown, covering also non-diagonal diffusion in the elliptic part. The proof is based on
The orthogonal decomposition factorizes a tensor into a sum of an orthogonal list of rankone tensors. We present several properties of orthogonal rank. We find that a subtensor may have a larger orthogonal rank than the whole tensor and prove the low
In this paper, we develop a computational multiscale to solve the parabolic wave approximation with heterogeneous and variable media. Parabolic wave approximation is a technique to approximate the full wave equation. One benefit of the method is that
The Vlasov--Maxwell equations are used for the kinetic description of magnetized plasmas. As they are posed in an up to 3+3 dimensional phase space, solving this problem is extremely expensive from a computational point of view. In this paper, we exp
In this work we analyze the entropic properties of the Euler equations when the system is closed with the assumption of a polytropic gas. In this case, the pressure solely depends upon the density of the fluid and the energy equation is not necessary