ﻻ يوجد ملخص باللغة العربية
The Vlasov--Maxwell equations are used for the kinetic description of magnetized plasmas. As they are posed in an up to 3+3 dimensional phase space, solving this problem is extremely expensive from a computational point of view. In this paper, we exploit the low-rank structure in the solution of the Vlasov equation. More specifically, we consider the Vlasov--Maxwell system and propose a dynamic low-rank integrator. The key idea is to approximate the dynamics of the system by constraining it to a low-rank manifold. This is accomplished by a projection onto the tangent space. There, the dynamics is represented by the low-rank factors, which are determined by solving lower-dimensional partial differential equations. The proposed scheme performs well in numerical experiments and succeeds in capturing the main features of the plasma dynamics. We demonstrate this good behavior for a range of test problems. The coupling of the Vlasov equation with the Maxwell system, however, introduces additional challenges. In particular, the divergence of the electric field resulting from Maxwells equations is not consistent with the charge density computed from the Vlasov equation. We propose a correction based on Lagrange multipliers which enforces Gauss law up to machine precision.
Many problems encountered in plasma physics require a description by kinetic equations, which are posed in an up to six-dimensional phase space. A direct discretization of this phase space, often called the Eulerian approach, has many advantages but
The primary challenge in solving kinetic equations, such as the Vlasov equation, is the high-dimensional phase space. In this context, dynamical low-rank approximations have emerged as a promising way to reduce the high computational cost imposed by
This paper constructs and analyzes a boundary correction finite element method for the Stokes problem based on the Scott-Vogelius pair on Clough-Tocher splits. The velocity space consists of continuous piecewise quadratic polynomials, and the pressur
In this paper, we analyse a new exponential-type integrator for the nonlinear cubic Schrodinger equation on the $d$ dimensional torus $mathbb T^d$. The scheme has recently also been derived in a wider context of decorated trees in [Y. Bruned and K. S
For the solution of the cubic nonlinear Schrodinger equation in one space dimension, we propose and analyse a fully discrete low-regularity integrator. The scheme is explicit and can easily be implemented using the fast Fourier transform with a compl