ﻻ يوجد ملخص باللغة العربية
Non-collinear antiferromagnetic materials have received dramatically increasing attention in the field of spintronics as their exotic topological features such as the Berry-curvature-induced anomalous Hall effect and possible magnetic Weyl states could be utilized in future topological antiferromagnetic spintronic devices. In this work, we report the successful integration of the antiferromagnetic metal Mn3Sn thin films onto ferroelectric oxide PMN-PT. By optimizing growth, we realized the large anomalous Hall effect with small switching magnetic fields of several tens mT fully comparable to those of bulk Mn3Sn single crystals, anisotropic magnetoresistance and negative parallel magnetoresistance in Mn3Sn thin films with antiferromagnetic order, which are similar to the signatures of the Weyl state in bulk Mn3Sn single crystals. More importantly, we found that the anomalous Hall effect in antiferromagnetic Mn3Sn thin films can be manipulated by electric fields applied onto the ferroelectric materials, thus demonstrating the feasibility of Mn3Sn-based topological spintronic devices operated in an ultralow power manner.
Ferrimagnets, which contain the advantages of both ferromagnets (detectable moments) and antiferromagnets (ultrafast spin dynamics), have recently attracted great attention. Here we report the optimization of epitaxial growth of a tetragonal perpendi
Using an electric field instead of an electric current (or a magnetic field) to tailor the electronic properties of magnetic materials is promising for realizing ultralow energy-consuming memory devices because of the suppression of Joule heating, es
Magnetotransport is at the center of the spintronics. Mn3Sn, an antiferromagnet that has a noncollinear 120{deg} spin order, exhibits large anomalous Hall effect (AHE) at room temperature. But such a behavior has been remained elusive in Mn3Sn films.
Spin-polarized currents play a key role in spintronics. Recently, it has been found that antiferromagnets with a non-spin-degenerate band structure can efficiently spin-polarize electric currents, even though their net magnetization is zero. Among th
With exceptional electrical and mechanical properties and at the same time air-stability, layered MoSi2N4 has recently draw great attention. However, band structure engineering via strain and electric field, which is vital for practical applications,