ﻻ يوجد ملخص باللغة العربية
For controller design for systems on manifolds embedded in Euclidean space, it is convenient to utilize a theory that requires a single global coordinate system on the ambient Euclidean space rather than multiple local charts on the manifold or coordinate-free tools from differential geometry. In this article, we apply such a theory to design model predictive tracking controllers for systems whose dynamics evolve on manifolds and illustrate its efficacy with the fully actuated rigid body attitude control system.
In this paper, we propose a chance constrained stochastic model predictive control scheme for reference tracking of distributed linear time-invariant systems with additive stochastic uncertainty. The chance constraints are reformulated analytically b
We consider the problem of bridging the gap between geometric tracking control theory and implementation of model predictive control (MPC) for robotic systems operating on manifolds. We propose a generic on-manifold MPC formulation based on a canonic
This paper introduces HPIPM, a high-performance framework for quadratic programming (QP), designed to provide building blocks to efficiently and reliably solve model predictive control problems. HPIPM currently supports three QP types, and provides i
Move blocking (MB) is a widely used strategy to reduce the degrees of freedom of the Optimal Control Problem (OCP) arising in receding horizon control. The size of the OCP is reduced by forcing the input variables to be constant over multiple discret
We present a data-driven model predictive control scheme for chance-constrained Markovian switching systems with unknown switching probabilities. Using samples of the underlying Markov chain, ambiguity sets of transition probabilities are estimated w