ﻻ يوجد ملخص باللغة العربية
BaZrS3 is a prototypical chalcogenide perovskite, an emerging class of unconventional semiconductor. Recent results on powder samples reveal that it is a material with a direct band gap of 1.7-1.8 eV, a very strong light-matter interaction, and a high chemical stability. However, many of the fundamental properties are unknown, hindering the ability to apply BaZrS3 for optoelectronics. Here we report the fabrication of BaZrS3 thin films, by sulfurization of oxide films deposited by pulsed laser deposition. We show that these films are n-type with carrier densities in the range of 10^19-10^20 cm^-3. Depending on the processing temperature, the Hall mobility ranges from 2.1 to 13.7 cm^2/Vs. The absorption coefficient is > 10^5 cm-1 at photon energy > 1.97 eV. Temperature dependent conductivity measurements suggest shallow donor levels. These results assure that BaZrS3 is a promising candidate for optoelectronics such as photodetectors, photovoltaics, and light emitting diodes.
We demonstrate the making of BaZrS3 thin films by molecular beam epitaxy (MBE). BaZrS3 forms in the orthorhombic distorted-perovskite structure with corner-sharing ZrS6 octahedra. The single-step MBE process results in films smooth on the atomic scal
BaZrS3, a prototypical chalcogenide perovskite, has been shown to possess a direct band gap, an exceptionally strong near band edge light absorption, and good carrier transport. Coupled with its great stability, non-toxicity with earth abundant eleme
Chalcogenide perovskites have emerged as a new class of electronic materials, but fundamental properties and applications of chalcogenide perovskites remain limited by the lack of high quality epitaxial thin films. We report epitaxial thin film growt
Owing to its superior visible light absorption and high chemical stability, chalcogenide perovskite barium zirconium sulfide has attracted significant attention in the past few years as a potential alternative to hybrid halide perovskites for optoele
Simple vacuum evaporation technique for deposition of dyes on various solid surfaces has been developed. The method is compatible with conventional solvent-free nanofabrication processing enabling fabrication of nanoscale optoelectronic devices. Thin